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I. Cooperative Game and
Characteristic Function

+ What is a Coordinative Game?

Definition 1.1
A cooperative game is determined by a couple (N, υ),
where
(i) N = {1, 2, · · · , n} is the set of players([);

(ii) υ : 2N → R is a section mapping, satisfying υ(φ) = 0,
called a characteristic function(A�¼ê).

A subset of N, denoted by S ⊂ N, (or S ∈ 2N), is called
a colleague(é�). υ(S) represents the value of this col-
league. The main purpose of Cooperative Game Theory
is to provide a fair rule, which determines the payments of
individual players. This rule is called an imputation(©�). 3 / 67



+ Some Examples

Example 1.2
(Gloves) There are N persons, every player has a single
glove. Assume R: the set of persons who have right gloves;
and L: the set of persons, who have left gloves. A pair of
gloves is worth $ 2, and a single glove is worth $0.02. Find
the characteristic function?
Let S ⊂ N. Then

Number of pairs:

NP = min(|R ∩ S|, |L ∩ S|).

Number of the remaining single gloves:

Ns = |S| − 2NP.

Hence,
υ(S) = 2× NP + 0.02× Ns. 4 / 67



Example 1.3
(Selling Horse) A person (A) is going to sell a horse, the
minimum price he asked is $100. Two persons (B and C)
want to buy a house, the price B is willing to pay is $100,
C is $110. Calculating the characteristic function.

In this game, N = {A,B,C}.

2N = {∅, {A}, {B}, {C}, {A,B}, {A,C}, {B,C}, {A,B,C}} .

By definition,
υ(∅) = 0.
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Example 1.3(cont’d)
If there is no trade, the characteristic function equals to 0.
Hence

υ({A}) = υ({B}) = υ({C}) = υ({B,C}) = 0.

If there is a trade, the we have the following:

υ({A,B}) = 100; υ({A,C}) = 110.

Similarly,
υ({A,B,C}) = 110.
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Example 1.3(cont’d)
We conclude that

υ(S) =



110, S = {A,B,C},
100, S = {A,B},
110, S = {A,C},
0, S = {A},
0, S = {B},
0, S = {C},
0, S = ∅.

(1)
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Example 1.4

� ��(T) �ü�Æ)(A) Ú(B)"A �nØïÄ, B �¢
�"XJB üÕó�, �ØÑØ©; A üÕó�, ����
Ø%Ø©, � 1 �ü�; A �B Ü�½P�üÕó�, þ�
�Ñ��SCI o«Ø©, � 2 �ü�; XJP��B Ü�,
��Ñ��SCI n«Ø©, � 4 �ü�; XJP��A Ü
�,��Ñ��SCI�«Ø©,� 7�ü�;XJP��A, B
�ÓÜ�, ��Ñ��SCI �«Ø©, � 10 �ü�. @o,
G = {N = {T,A,B}, υ},ùp

υ(∅) = 0; υ(B) = 0;
υ(A) = 1; υ(A ∪ B) = 2;
υ(T) = 2; υ(T ∪ B) = 4;
υ(T ∪ A) = 6; υ(T ∪ A ∪ B) = 10.

(2)
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Example 1.4(cont’d)

u´k

υ(S) =



= 0; S = ∅, or {B},
= 1, S = {A},
= 2, S = {T}, or {A,B},
= 4, S = {T,B},
= 6, S = {T,A},
= 10, S = {T,A,B}.

(3)
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+ Vector Form of Characteristic Function

Let S ∈ 2N. It can be expressed by an index function
Is ∈ Dn. Denote IS = (s1, s2, · · · , sn), where

sj =

{
1, j ∈ S
0, j 6∈ S.

Since si ∈ D = {0, 1}, i = 1, 2, · · · , n}, then a character-
istic function υ can be considered as a pseudo-Boolean
function

υ(S) = υ(s1, s2, · · · , sn) : Dn → R. (4)
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+ Algebraic Representation of Characteristic Function

Setting 1 ∼ δ1
2, 0 ∼ δ2

2, then sj ∈ ∆2, j = 1, 2, · · · , n. For
each characteristic function υ, there is a structure vector
denoted by Vυ, such that

υ(S) = Vυ nn
i=1 si. (5)

Note that Vυ ∈ R2n, and υ(φ) = 0, the last component of
Vυ is 0. Hence,

Proposition 1.5
Let |N| = n, Then the set of cooperative games over N,
denoted by G(N), form a 2n−1 dimensional vector space,
which is isomorphic to R2n−1.

11 / 67



+ Essential/Non-Essential Game

Definition 1.6
Consider (N, υ).
(i) υ is said to satisfy super-additivity (��\5) if for

any two colleagues P, Q ∈ 2N and P ∩ Q = ∅:

υ(P ∪ Q) ≥ υ(P) + υ(Q). (6)

(N, υ) is called an essential game (��Æ�) if> holds
for some (R, S).

(ii) υ is said to satisfy additivity (�\5) if for any two
colleagues P, Q ∈ 2N and P ∩ Q = ∅:

υ(P ∪ Q) = υ(P) + υ(Q), (7)

(N, υ) is called a non-essential game (���Æ�).
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Theorem 1.7
(N, υ) is a non-essential game, if and only if,

υ(N) =
n∑

i=1

υ(i). (8)

Definition 1.8
(N, υ) is an essential game if

v(N) >
n∑

i=1

v(i).

We are only interested in essential games!
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II. Zero-Sum (Constant-Sum) Game
+ What is a Zero-Sum Game

Definition 2.1
A constant-sum game is a game G = (N, S,C). If

n∑
i=1

ci(x1, x2, · · · , xn) = µ, xi ∈ Si, ∀i. (9)

If µ = 0, G is a zero-sum game.

Example 2.2
Zero-sum game:
(i) Rock-Paper-Scissors(�Þ-}-Ù),

(ii) Tienji Horse Racing(XRmê)
(iii) Palm-up Palm-down (Ã%Ã�)
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+ Two Player Zero-Sum Game

Consider G ∈ G2;p,q:

Payoff Matrix

A1 =


a1,1 a1,2 · · · a1,q

a2,1 a2,2 · · · a2,q
...

ap,1 ap,2 · · · ap,q


A2 = −A1.
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Proposition 2.2
Assume G ∈ G[2,p,q]. Then
(i)

max
1≤i≤p

min
1≤j≤q

ai,j ≤ min
1≤j≤q

max
1≤i≤p

ai,j. (10)

(ii) The necessary and sufficient condition for

max
1≤i≤p

min
1≤j≤q

ai,j = min
1≤j≤q

max
1≤i≤p

ai,j, (11)

is there exists (i∗, j∗) such that

ai,j∗ ≤ ai∗,j∗ ≤ ai∗,j, i = 1, 2, · · · ,m; j = 1, 2, · · · , n.
(12)
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Proposition 2.2(cont’d)
(iii) For mixed strategies, there exists at least one (x∗, y∗)

such that

max
x∈S̄1

min
y∈S̄2

E(x, y) = min
y∈S̄2

max
x∈S̄1

E(x, y) = E(x∗, y∗). (13)

Note that (x∗, y∗) is a Nash equilibrium.

Proposition 2.3
Let (x∗, y∗) and (x̄, ȳ) be two Nash equilibria of a two player
zero-sum game. Then

Ec1(x∗, y∗) = −Ec2(x∗, y∗) = Ec1(x̄, ȳ) = −Ec2(x̄, ȳ) (14)
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+ n Player Zero-Sum Game

Consider n player zero-sum game. Let R ⊂ N and and
Rc 6= ∅. To evaluate of value of R, it is natural to define it
as its payoff in fighting with Rc.
The strategies for R and Rc are:

SR =
∏
i∈R

Si, SRc =
∏
i∈Rc

Si.

The game between R and Rc becomes a two player zero
sum game. Then we can define

υ(R) := maxξ∈S̄R minη∈S̄Rc

∑
r∈R

er(ξ, η)

= minη∈S̄Rc maxξ∈S̄R

∑
r∈R

er(ξ, η)

=
∑
r∈R

er(ξ
∗, η∗),

(15)

where (ξ∗, η∗) is a Nash equilibrium of the game over (R,Rc).
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Define
υ(∅) = 0,

υ(N) = maxs∈S

n∑
i=1

ci(s). (16)

Then (N, υ) becomes a cooperative game.
+ My Homework

Example 2.a
A boy and a girl play matching penny: The payoff bi-matrix
is

LLL 1: Payoffs for Example 2.a

B\G H T
H 3, −3 −2, 2
T −2, 2 1, −1
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Example 2.a(cont’d)

The Nash equilibrium is: p∗ = (3/8, 5/8), q∗ = (3/8, 5/8).

Consider it as a cooperative game. Using (15), we have

υ(∅) = 0,
υ({B}) = 3

8
3
8 ∗ 3 + 3

8
5
8 ∗ (−2)

+5
8

3
8 ∗ (−2) + 5

8
5
8 ∗ (1) = −1

8 ,
υ({G} = −1

8 ,
υ({B, G} = 0.

A constant sum non-cooperative game has a naturel coop-
erative game structure!
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Remark 2.4
For non-constant game, is it possible to use

υ(R) := max
ξ∈S̄R

min
η∈S̄Rc

eR(ξ, η) (17)

or
υ(N) = max

s∈S

∑
i∈N

ci(s)

to define characteristic function?

Main problem: super-additivity is not ensured!
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+ Properties of Characteristic Function of Zero-Sum Games

Proposition 2.5
Let υ be the characteristic function of zero-sum games
(defined as above). Then

υ(R) + υ(Rc) = υ(N), ∀R ∈ 2N . (18)

Proposition 2.6
Let υ be the characteristic function of zero-sum games.
Then (super-additivity)

υ(S ∪ T) ≥ υ(S) + υ(T). (19)

22 / 67



Remark 2.7
No possible cooperation in zero-sum game with 2
players.
There is a possibility for cooperation in zero-sum
game with more than 2 players.

Example 2.8
A palm-up palm-down game with three players are consid-
ered. Denote by S1 = S2 = S3 := S0 = {1, 2}, where

1 : palm-up; 2 : palm-down.
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Example 2.8(cont’d)
The payoff matrix is shown in Table 2.

LLL 2: Payoffs for Example 2.8

c\p 111 112 121 122 211 212 221 222
c1 0 1 1 −2 −2 1 1 0
c2 0 1 −2 1 1 −2 1 0
c3 0 −2 1 1 1 1 −2 0
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Example 2.8(cont’d)
We may consider the best payoffs as the characteristic
function.

(i) Since the game is zero-sum, we have υ(1, 2, 3) = 0.
(ii) Consider υ(1, 2). Take R = {1, 2} as one side, Rc =
{3} as the other side, then the payoff matrix of R can
be expressed as in Table 3.

LLL 3: Payoff of R vc Rc

R = {1, 2}\Rc = {3} 1 2
11 0 2
12 −1 −1
21 −1 −1
22 2 0
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Example 2.3(cont’d)
No matter what strategy 3 chosen, for R 12 or 21 is wroth
than 11 or 22. So, row 2 and row 3 can be deleted.
Hence, both R and Rc have two strategies, Denote p =
P(R = 11), q = P(Rc = 1). then the expected value of R is

ER = p(1− q)× 2 + (1− p)q× 2.

Similarly,

ERc = p(1− q)× (−2) + (1− p)q× (−2).

Hence, the Nash equilibrium can be calculated as

p∗ = (1/2, 1/2) q∗ = (1/2, 1/2).

It follows from (15) that ER = 1, ERc = −1.
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Example 2.3(cont’d)
So we define

υ({1, 2}) = 1, υ({3}) = −1.

Because of symmetry, the vector form of characteristic
function υ is

Vυ = [0, 1, 1, 1,−1,−1,−1, 0].
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III. Two Standard Cooperative Games

+ Unanimity Game (ÃÉÆÆ�)

Definition 3.1
G = (N, υ) is called a unanimity game, if there exists a
∅ 6= T ∈ 2N, such that

υT(S) =

{
1, T ⊂ S
0, Otherwise. (20)

Denote by Gc
n the set of cooperative games with n players.

Then each G ∈ Gc
n is uniquely determined by υ. Since

υ(∅) = 0,

Gc
n ∼ R2n−1. (21)
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Theorem 3.2
(i) The set of unanimity Games{

υT

∣∣∅ 6= T ∈ 2N} ,
form a basis of Gc

n.
(ii) Let υ ∈ GN. Then

υ =
∑

T∈2N\∅

µTυT , (22)

where

µT =
∑
S⊂T

(−1)(|T|−|S|)υ(S). (23)
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Example 3.3
Consider G = (N = {1, 2}, υ). We have subsets 2N as:

S1 = {1, 2}, S2 = {1}, S3 = {2}, S4 = ∅.

By Definition 3.1, we have

uS1(S1) = 1, uS1(S2) = 0, uS1(S3) = 0, uS1(S4) = 0,
uS2(S1) = 1, uS2(S2) = 1, uS2(S3) = 0, uS2(S4) = 0,
uS3(S1) = 1, uS3(S2) = 0, uS3(S3) = 1, uS3(S4) = 0,

According to (22) and (23), we have

υ = µS1υS1 + µS2υS2 + µS3υS3 ,

where µSi can be calculated by (23) as:
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Example 3.3(cont’d)

µS1 =
∑

S⊂S1

(−1)(|S1|−|S|)υ(S) = v(S1)− v(S2)− v(S3),

µS2 =
∑

S⊂S2

(−1)(|S2|−|S|)υ(S) = v(S2),

µS3 =
∑

S⊂S3

(−1)(|S3|−|S|)υ(S) = υ(S3).

It follows that

υ = [υ(S1)− υ(S2)− υ(S3)] υS1 + υ(S2)υS2 + υ(S3)υS3 . (24)
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+ Matrix Form of (23)

Formally set:

υ∅(S) :=

{
1, S = ∅
0, Otherwise.

And we fix
µ∅ = 0.

The formula (22) can be written as

υ =
∑
T∈2N

µTυT . (25)
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Using structure vectors VT , VS to express υT we have the
following:
(i) ‖N‖ = 1:

LLL 4: υT for |N| = 1

VT\VS 1 0
1 1 0
0 1 1
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(ii) ‖N‖ = 2:

LLL 5: |N| = 2�� υT for |N| = 2

VT\VS 1 1 1 0 0 1 0 0
1 1 1 0 0 0
1 0 1 1 0 0
0 1 1 0 1 0
0 0 1 1 1 1
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(iii) ‖N‖ = 3:

LLL 6: υT for |N| = 3
VT\VS 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0
1 1 1 1 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0 0
1 0 1 1 0 1 0 0 0 0 0
1 0 0 1 1 1 1 0 0 0 0
0 1 1 1 0 0 0 1 0 0 0
0 1 0 1 1 0 0 1 1 0 0
0 0 1 1 0 1 0 1 0 1 0
0 0 0 1 1 1 1 1 1 1 1
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The υT in above tables, denoted by Un, is called n-th
degree unanimity game, where n = |N|, Uu ∈ B2n×2n.

Proposition 3.4
The unanimity matrices can be constructed recursively as
follows: 

U1 =

[
1 0
1 1

]

Uk+1 =

[
Uk 0
Uk Uk

]
, k = 2, 3, · · · .

(26)
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Theorem 3.5
The structure vector of υ satisfies

Vυ = (µ1 µ2 · · · µ2n) Un. (27)

Hence, the coefficients of expansion (22) satisfy

(µ1 µ2 · · · µ2n) = VυU−1
n , (28)

where 
U−1

1 =

[
1 0
−1 1

]

U−1
k+1 =

[
U−1

k 0
−U−1

k U−1
k

]
, k = 2, 3, · · · .

(29)

37 / 67



Example 3.6
Recall Example 3.3. Let n = 2. Using formula (27), we
have

(υ(S1) υ(S2) υ(S3) 0) = (µ1 µ2 µ3 µ4) U2.

Hence,

(µ1 µ2 µ3 µ4) = (v(S1) v(S2) v(S3) 0) U−1
2

= (v(S1) v(S2) v(S3) 0)


1 0 0 0
−1 1 0 0
−1 0 1 0
1 −1 −1 1


= (υ(S1)− υ(S2)− υ(S3) υ(S2) υ(S3) 0) .

38 / 67



+ Equivalence of Characteristic Functions

Definition 3.7
Let (N, υ) and (N, υ′) be two cooperative games. The
characteristic functions υ and υ′ are said to be strategi-
cally equivalent (üÑ�d), denoted by υ ∼ υ′, if there
exist α > 0, βi ∈ R, i = 1, 2, · · · , n, (n = |N|)§such that

υ′(R) = αυ(R) +
∑
i∈R

βi, ∀R ∈ 2N . (30)

Proposition 3.8
Assume υ satisfies super-additivity, and υ ∼ υ′, then υ′

also satisfies super-additivity.
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+ Normal Game (5�Æ�)

Definition 3.9
A cooperative game is said to be a (0, 1)-normal game (5
�Æ�), if it satisfies
(i) υ({i}) = 0, ∀i ∈ N;

(ii) υ(N) = 1.

Proposition 3.10
A cooperative game G = (N, υ), satisfying super-additivity,
is strategy equivalent to a unique (0, 1)-normal game.
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+ Verifying Normal Form

Since

υ(N)−
n∑

i=1

υ({i}) > 0.

Set
α =

1

υ(N)−
n∑

i=1
υ({i})

> 0;

βi = −αυ({i}), i = 1, 2, · · · , n.

Define
υ′(R) = αυ(R) +

∑
i∈R

βi, ∀R ∈ 2N .

It is easy to see that υ′ is (0, 1)-normal game.
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+ Non-Essential Game (���Æ�)

Definition 3.11
(N, υ) is called a 0-normal game ("5�Æ�), if

υ(R) = 0, ∀R ∈ 2N .

Consider a non-essential game (N, υ), we have

υ(R) =
∑
i∈R

υ({i}), ∀R ∈ 2N .

Let α = 1, βi = −υ({i}). Define

υ′(R) = υ(R)−
∑
i∈R

υ({i}).

We have υ′(R) = 0, ∀R ∈ 2N.
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Proposition 3.12
Every non-essential game is equivalent to a 0-normal
game.
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IV. Imputation-Solution to
Cooperative Game

+ Imputation (©�)

Definition 4.1
Consider a cooperative game (N, υ), an n dimensional
vector x = (x1, x2, · · · , xn) ∈ Rn is called an imputation, if it
satisfies
(i) Individual Rationality (�NÜn5):

xi ≥ υ({i});

(ii) Group Rationality)(+NÜn5):

n∑
i=1

xi = υ(N).

The set of all imputations of (N, υ), denoted by E(υ).
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Remark 4.2
(i) Individual Rationality ensures the payoff of each per-

son is no lesser that “non-cooperative” case. Group
Rationality ensures that all income has been dis-
tributed, and no blank cheque.

(ii) The “solution” for an cooperative game is a (reason-
able) imputation.

Proposition 4.3
Non-essential game has only one imputation, which is:

xi = v({i}), i = 1, 2, · · · , n. (31)
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+ Core(Ø%)

Proposition 4.3
The set of imputations of an essential game is an n dimen-
sional non-empty convex set, denoted by E(υ).

Definition 4.4
Let x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) be two im-
putations. x is said to dominate (`�) y, if there exists a
∅ 6= R ⊂ N, such that
(i)

xi > yi, i ∈ R. (32)

(ii)

υ(R) ≥
∑
i∈R

xi. (33)
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Definition 4.5
Given a cooperative game (N, υ), the set of imputations,
which can not be dominated by any imputation, is called
the core(Ø%), denoted by C(υ).

Theorem 4.6
Given a a cooperative game (N, υ) with |N| = n, and x ∈
Rn. x ∈ C(υ), if and only if,
(i)

x(R) ≥ υ(R), ∀R ⊂ N. (34)

(ii)

x(N) = υ(N). (35)

(Necessity needs super-additivity of υ.)
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+ Numerical Method

(i) Constructing Mn:
Convert 2n − 1, 2n − 2, · · · , 1, 0 into binary forms as

b1 = (1, 1, · · · , 1, 1) b2 = (1, 1, · · · , 1, 0) · · ·
· · · b2n−1 = (0, 0, · · · , 0, 1) b2n = (0, 0, · · · , 0, 0).

Construct

Mn = [bT
1 , b

T
2 , · · · , bT

2n ]. (36)

(ii) Constructing Nn:
Deleting first and last columns of Mn yields M̈n. Set

Nn = M̈T
n . (37)
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(iii) Constructing Wυ:
Delete first and last elements of Vυ to get V̈υ. Define

Wυ = V̈T
υ . (38)

(iv) Construct a set of equality-inequality as
n∑

i=1
xi = υ(N),

Nnx ≥ Wυ.
(39)
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Proposition 4.7
Consider (N, υ). x ∈ C(υ), if and only if, x satisfies (39).

Example 4.8
Recall Example 1.3(Selling Horse) We have

M3 =

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

 .
Vυ = [110, 100, 110, 0, 0, 0, 0, 0].

Then (39) becomes
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Example 4.8(cont’d)

x1 + x2 + x3 = 110

1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1


x1

x2

x3

 ≥


100
110
0
0
0
0


.

(40)
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Example 4.8(cont’d)
The solution is: 

x1 ∈ [100, 110]

x2 = 0
x3 = 110− x1.

We conclude that

C(υ) = {(t, 0, 110− t) | 100 ≤ t ≤ 110}.

Remark 4.9
For a given G = (N, υ) ∈ Gn, the corner C(υ) may not exist!
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V. Shapley Value

+ Permutation Group Sn

Definition 5.1
(i) A permutation:

σ : {1, 2, · · · , n} → {1, 2, · · · , n}

(ii) The set of permutations:

Sn = {Σ | Σ : Dn → Dn}.

(iii)
T i
σ = {j | σj < σi}.
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Example 5.2
(i)

σ = (1, 3, 4)(2, 5) ∈ S5.

(ii) Consider σ, then

σ(1) = 3, σ(2) = 5, σ(3) = 4,
σ(4) = 1, σ(5) = 2.

It is easy to see that:

T3
σ = {1, 4, 5},

T5
σ = {4}.
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Definition 5.3
Consider G = (N, υ) ∈ Gn. Define

ϕi(υ) := 1
n!

∑
σ∈Sn

[υ (T i
σ ∪ {i})− υ (T i

σ)] ,

i = 1, 2, · · · , n.
(41)

Then
ϕ := (ϕ1, ϕ2, · · · , ϕn) ∈ E(υ)

is called a Shapley value.

Proposition 5.4

n∑
i=1

ϕi(υ) = υ(N). (42)

ϕi(υ) ≥ υ({i}). (43)
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+ Advantage of Shapley Value

Theorem 5.5
Shapley value is the only imputation, satisfying

Efficiency Axiom (k�5ún);
Symmetry Axiom (é¡ún);
Additivity Axiom (�\5ún).

��,5éüØ�Ú6,�ÆÑ��,�®,2010.
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+ A Formula for Calculating Shapley Value

Step 1: Construct a sequence of vectors `k:

`1 =

[
1
0

]
∈ R2;

`k+1 =

[
`k + 12k

`k

]
∈ R2k+1

,

k = 1, 2, 3, · · · .

(44)

Example 5.6

`2 =

[
`1 + 12

`1

]
=


2
1
1
0

 .
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Step 2: Construct ηk ∈ R2k :

ηk = (`k)!(k12k − `k)!. (45)

Example 5.7

η1 =

[
1
1

]
, η2 =


2
1
1
2

 , · · · .
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Step 3: Set ζ := ηn−1.
Split ζ equally into k blocks:

ζ =


ζ1

k
ζ2

k
...
ζk

k

 , k = 1, 2, 22, · · · , 2n−1.
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Step 4: Define Ξn as:

Ξn =
1
n!


(
ζ1

−ζ1

) 
ζ1

2
−ζ1

2
ζ2

2
−ζ2

2





ζ1
4
−ζ1

4
ζ2

4
−ζ2

4
ζ3

4
−ζ3

4
ζ4

4
−ζ4

4


· · ·



ζ1
2n−1

−ζ1
2n−1

ζ2
2n−1

−ζ2
2n−1

...
ζ2n−1

2n−1

−ζ2n−1

2n−1




.

(46)

Theorem 5.8

ϕ(υ) = VυΞn. (47)

60 / 67



+ References:

Y. Wang, D. Cheng, X. Liu, Matrix expression of Shap-
ley values and its application to distributed resource
allocation, Sci. China Inform. Sci., Vol. 62, 022201:1-
022201:11, 1019.

H. Li, S. Wang, A. Liu, M. Xia, Simplification of Shap-
ley value for cooperative games via minimum carrier,
Contr. Theor. Tech., Vol. 19, 157-169, 2021.

X. Xia, H. Li, X. Ding, Y. Liu, Matrix approach to calcu-
lation of Banzhaf value with applications, Contr. Theor.
Appl., Vol. 37, No. 2, 446-452, 2020.

61 / 67



Example 5.9
We calculate some Ξn for small n.

n = 2:
`1 =

[
1 0

]T
;

η1 =
[
1!(2− 1− 1)! 0!(2− 1− 0)!

]T
=
[
1 1

]T

Ξ2 =
1
2


1 1
1 −1
−1 1
−1 −1

 .
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Example 5.9(cont’s)
n = 3:

Ξ3 =
1
6



2 2 2
1 1 −2
1 −2 1
2 −1 −1
−2 1 1
−1 2 −1
−1 −1 2
−2 −2 −2


.
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Example 5.9(cont’s)
n = 4:

Ξ4 =
1
24



6 6 6 6
2 2 2 −6
2 2 −6 2
6 6 −2 −2
2 −6 2 2
6 −2 6 −2
6 −2 −2 6
6 −6 −6 −6
−6 2 2 2
−2 6 6 −2
−2 6 −2 6
−6 6 −6 −6
−2 −2 6 6
−6 −6 6 −6
−6 −6 −6 6
−6 −6 −6 −6



.
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Example 5.10
Recall Example 1.3 (selling horse).

Vυ =
[
110 100 110 0 0 0 0 0

]
.

Using formula (47), The Shapley value is

ϕ(v) = VvΞ3 =
[
71.67 16.67 21.67

]
.
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VI. Final Remarks

+ Remarks on Cooperative Game

(i) Cooperative game (G = (N, υ)) is another kind of games
(vs non-cooperative game).

(ii) Constant sum game has a natural cooperative game
structure.

(iii) Unanimity games form a basis for cooperative games
(∼ R2n−1).

(iv) Normal games are canonical form of cooperative games.
(v) Imputation is the purpose of cooperative game theory.

Shapley value is one of the useful imputations.
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