Cooperative Game

Daizhan Cheng

Research Center of STP Theory and Applications, Liaocheng Univ. Shandong, Academy of Mathematics and Systems Science, CAS

> Lecture Note at LiaoCheng University July 24, 2021, LiaoCheng

Outline of Presentation

- Cooperative Game and Characteristic Function
- 2 Zero-Sum (Constant-Sum) Game
- Two Standard Cooperative Games
- Imputation-Solution to Cooperative Game
- **5** Shapley Value

I. Cooperative Game and Characteristic Function

What is a Coordinative Game?

Definition 1.1

A cooperative game is determined by a couple (N, v), where

(i) $N = \{1, 2, \dots, n\}$ is the set of players(玩家);

(ii) $v: 2^N \to \mathbb{R}$ is a section mapping, satisfying $v(\phi) = 0$, called a characteristic function(特征函数).

A subset of *N*, denoted by $S \subset N$, (or $S \in 2^N$), is called a colleague(联盟). v(S) represents the value of this colleague. The main purpose of Cooperative Game Theory is to provide a fair rule, which determines the payments of individual players. This rule is called an imputation(分配).

Some Examples

Example 1.2

(Gloves) There are *N* persons, every player has a single glove. Assume *R*: the set of persons who have right gloves; and *L*: the set of persons, who have left gloves. A pair of gloves is worth \$ 2, and a single glove is worth \$0.02. Find the characteristic function? Let $S \subset N$. Then

• Number of pairs:

$$N_P = \min(|R \cap S|, |L \cap S|).$$

• Number of the remaining single gloves:

$$N_s=|S|-2N_P.$$

Hence,

$$\upsilon(S) = 2 \times N_P + 0.02 \times N_s.$$

Example 1.3

(Selling Horse) A person (A) is going to sell a horse, the minimum price he asked is 100. Two persons (B and C) want to buy a house, the price B is willing to pay is 100, C is 110. Calculating the characteristic function.

In this game, $N = \{A, B, C\}$.

$$2^{\mathbb{N}} = \{\emptyset, \{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}, \{A, B, C\}\}.$$

By definition,

$$v(\emptyset) = 0.$$

Example 1.3(cont'd)

If there is no trade, the characteristic function equals to $\ensuremath{\mathbf{0}}$. Hence

$$v(\{A\}) = v(\{B\}) = v(\{C\}) = v(\{B, C\}) = 0.$$

If there is a trade, the we have the following:

$$v(\{A, B\}) = 100; v(\{A, C\}) = 110.$$

Similarly,

$$\upsilon(\{A, B, C\}) = 110.$$

Example 1.3(cont'd)

We conclude that

$$\upsilon(S) = \begin{cases}
110, & S = \{A, B, C\}, \\
100, & S = \{A, B\}, \\
110, & S = \{A, C\}, \\
0, & S = \{A\}, \\
0, & S = \{A\}, \\
0, & S = \{B\}, \\
0, & S = \{C\}, \\
0, & S = \emptyset.
\end{cases}$$
(1)

Example 1.4

一位导师(T) 带两个学生(A) 和(B)。A 做理论研究, B 做实验。如果B 单独工作, 写不出论文; A 单独工作, 可写一篇核心论文, 值 1 个单元; A 与B 合作或老师单独工作, 均可写出一篇SCI 四区论文, 值 2 个单元; 如果老师与B 合作, 可写出一篇SCI 三区论文, 值 4 个单元; 如果老师与A 合作, 可写出一篇SCI 二区论文, 值 7 个单元; 如果老师与A, B 共同合作, 可写出一篇SCI 一区论文, 值 10 个单元. 那么, $G = \{N = \{T, A, B\}, v\}$, 这里

$$\begin{array}{ll}
\upsilon(\emptyset) = 0; & \upsilon(B) = 0; \\
\upsilon(A) = 1; & \upsilon(A \cup B) = 2; \\
\upsilon(T) = 2; & \upsilon(T \cup B) = 4; \\
\upsilon(T \cup A) = 6; & \upsilon(T \cup A \cup B) = 10.
\end{array}$$
(2)

Example 1.4(cont'd)

于是有

$$\upsilon(S) = \begin{cases} = 0; \quad S = \emptyset, \text{ or } \{B\}, \\ = 1, \quad S = \{A\}, \\ = 2, \quad S = \{T\}, \text{ or } \{A, B\}, \\ = 4, \quad S = \{T, B\}, \\ = 6, \quad S = \{T, A\}, \\ = 10, \quad S = \{T, A, B\}. \end{cases}$$
(3)

Vector Form of Characteristic Function

Let $S \in 2^N$. It can be expressed by an index function $I_s \in \mathcal{D}^n$. Denote $I_s = (s_1, s_2, \cdots, s_n)$, where

$$s_j = \begin{cases} 1, & j \in S \\ 0, & j \notin S. \end{cases}$$

Since $s_i \in \mathcal{D} = \{0, 1\}, i = 1, 2, \dots, n\}$, then a characteristic function v can be considered as a pseudo-Boolean function

$$\upsilon(S) = \upsilon(s_1, s_2, \cdots, s_n) : \mathcal{D}^n \to \mathbb{R}.$$
 (4)

Algebraic Representation of Characteristic Function

Setting $1 \sim \delta_2^1$, $0 \sim \delta_2^2$, then $s_j \in \Delta_2$, $j = 1, 2, \dots, n$. For each characteristic function v, there is a structure vector denoted by V_v , such that

$$\upsilon(S) = V_{\upsilon} \ltimes_{i=1}^{n} s_{i}.$$
 (5)

Note that $V_{\upsilon} \in \mathbb{R}^{2^n}$, and $\upsilon(\phi) = 0$, the last component of V_{υ} is 0. Hence,

Proposition 1.5

Let |N| = n, Then the set of cooperative games over N, denoted by G(N), form a $2^n - 1$ dimensional vector space, which is isomorphic to \mathbb{R}^{2^n-1} .

Essential/Non-Essential Game

Definition 1.6

Consider (N, v).

(i) v is said to satisfy super-additivity (超可加性) if for any two colleagues $P, Q \in 2^N$ and $P \cap Q = \emptyset$:

$$v(P \cup Q) \ge v(P) + v(Q).$$
(6)

(N, v) is called an essential game (本质博弈) if > holds for some (R, S).

(ii) v is said to satisfy additivity (可加性) if for any two colleagues $P, Q \in 2^N$ and $P \cap Q = \emptyset$:

$$v(P \cup Q) = v(P) + v(Q), \tag{7}$$

(N, v) is called a non-essential game (非本质博弈).

Theorem 1.7

 (N, υ) is a non-essential game, if and only if,

$$\upsilon(N) = \sum_{i=1}^{n} \upsilon(i).$$
(8)

Definition 1.8

(N, v) is an essential game if

$$v(N) > \sum_{i=1} v(i).$$

We are only interested in essential games!

II. Zero-Sum (Constant-Sum) Game

🖙 What is a Zero-Sum Game

Definition 2.1

A constant-sum game is a game G = (N, S, C). If

$$\sum_{i=1}^{n} c_i(x_1, x_2, \cdots, x_n) = \mu, \quad x_i \in S_i, \quad \forall i.$$
(9)

If $\mu = 0$, G is a zero-sum game.

Example 2.2

Zero-sum game:

- (i) Rock-Paper-Scissors(石头-剪刀-布),
- (ii) Tienji Horse Racing(田忌赛马)

(iii) Palm-up Palm-down (手心手背)

🖙 Two Player Zero-Sum Game

Consider $G \in \mathcal{G}_{2;p,q}$:

Payoff Matrix

$$A_{1} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,q} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,q} \\ \vdots & & & \\ a_{p,1} & a_{p,2} & \cdots & a_{p,q} \end{bmatrix}$$
$$A_{2} = -A_{1}.$$

Proposition 2.2

Assume $G \in \mathcal{G}_{[2,p,q]}$. Then (i)

 $\max_{1 \le i \le p} \min_{1 \le j \le q} a_{i,j} \le \min_{1 \le j \le q} \max_{1 \le i \le p} a_{i,j}.$ (10)

(ii) The necessary and sufficient condition for

 $\max_{1 \le i \le p} \min_{1 \le j \le q} a_{i,j} = \min_{1 \le j \le q} \max_{1 \le i \le p} a_{i,j}, \tag{11}$

is there exists (i^*, j^*) such that

$$a_{i,j^*} \le a_{i^*,j^*} \le a_{i^*,j}, \quad i = 1, 2, \cdots, m; j = 1, 2, \cdots, n.$$
(12)

Proposition 2.2(cont'd)

(iii) For mixed strategies, there exists at least one (x^*, y^*) such that

$$\max_{x \in \bar{S}_1} \min_{y \in \bar{S}_2} E(x, y) = \min_{y \in \bar{S}_2} \max_{x \in \bar{S}_1} E(x, y) = E(x^*, y^*).$$
(13)

Note that (x^*, y^*) is a Nash equilibrium.

Proposition 2.3

Let (x^*,y^*) and (\bar{x},\bar{y}) be two Nash equilibria of a two player zero-sum game. Then

$$Ec_1(x^*, y^*) = -Ec_2(x^*, y^*) = Ec_1(\bar{x}, \bar{y}) = -Ec_2(\bar{x}, \bar{y})$$
 (14)

n Player Zero-Sum Game

Consider *n* player zero-sum game. Let $R \subset N$ and and $R^c \neq \emptyset$. To evaluate of value of *R*, it is natural to define it as its payoff in fighting with R^c . The strategies for *R* and R^c are:

$$S_R = \prod_{i \in R} S_i, \quad S_{R^c} = \prod_{i \in R^c} S_i.$$

The game between R and R^c becomes a two player zero sum game. Then we can define

$$\upsilon(\mathbf{R}) := \max_{\xi \in \bar{S}_R} \min_{\eta \in \bar{S}_{R^c}} \sum_{r \in R} e_r(\xi, \eta)
= \min_{\eta \in \bar{S}_{R^c}} \max_{\xi \in \bar{S}_R} \sum_{r \in R} e_r(\xi, \eta)
= \sum_{r \in R} e_r(\xi^*, \eta^*),$$
(15)

where (ξ^*, η^*) is a Nash equilibrium of the game over (R, R^c) .

Define

$$\upsilon(\emptyset) = 0,$$

$$\upsilon(N) = \max_{s \in S} \sum_{i=1}^{n} c_i(s).$$
 (16)

Then (N, v) becomes a cooperative game. My Homework

Example 2.a

A boy and a girl play matching penny: The payoff bi-matrix is

表 1: Payoffs for Example 2.a

$B \setminus G$	Н	Т		
H	3, -3	-2, 2		
T	-2, 2	1, -1		

The Nash equilibrium is: $p^* = (3/8, 5/8), q^* = (3/8, 5/8).$

Consider it as a cooperative game. Using (15), we have

$$\begin{array}{rcl} \upsilon(\emptyset) & = & 0, \\ \upsilon(\{B\}) & = & \frac{3}{8}\frac{3}{8}*3 + \frac{3}{8}\frac{5}{8}*(-2) \\ & & +\frac{5}{8}\frac{3}{8}*(-2) + \frac{5}{8}\frac{5}{8}*(1) = -\frac{1}{8}, \\ \upsilon(\{G\} & = & -\frac{1}{8}, \\ \upsilon(\{B, G\} & = & 0. \end{array}$$

A constant sum non-cooperative game has a naturel cooperative game structure!

Remark 2.4

For non-constant game, is it possible to use

$$\upsilon(\mathbf{R}) := \max_{\xi \in \bar{S}_R} \min_{\eta \in \bar{S}_{R^c}} e_R(\xi, \eta)$$
(17)

or

$$\upsilon(N) = \max_{s \in S} \sum_{i \in N} c_i(s)$$

to define characteristic function?

Main problem: super-additivity is not ensured!

Properties of Characteristic Function of Zero-Sum Games

Proposition 2.5

Let $\ \upsilon$ be the characteristic function of zero-sum games (defined as above). Then

$$\upsilon(\mathbf{R}) + \upsilon(\mathbf{R}^c) = \upsilon(N), \quad \forall \mathbf{R} \in 2^N.$$
(18)

Proposition 2.6

Let v be the characteristic function of zero-sum games. Then (super-additivity)

$$\upsilon(S \cup T) \ge \upsilon(S) + \upsilon(T).$$
(19)

Remark 2.7

- No possible cooperation in zero-sum game with 2 players.
- There is a possibility for cooperation in zero-sum game with more than 2 players.

Example 2.8

A palm-up palm-down game with three players are considered. Denote by $S_1 = S_2 = S_3 := S_0 = \{1, 2\}$, where

1: palm-up; 2: palm-down.

Example 2.8(cont'd)

The payoff matrix is shown in Table 2.

表 2: Payoffs for Example 2.8

$c \setminus p$	111	112	121	122	211	212	221	222
<i>c</i> ₁	0	1	1	-2	-2	1	1	0
<i>c</i> ₂	0	1	-2	1	1	-2	1	0
<i>c</i> ₃	0	-2	1	1	1	1	-2	0

Example 2.8(cont'd)

We may consider the best payoffs as the characteristic function.

- (i) Since the game is zero-sum, we have v(1,2,3) = 0.
- (ii) Consider v(1,2). Take $R = \{1,2\}$ as one side, $R^c = \{3\}$ as the other side, then the payoff matrix of *R* can be expressed as in Table 3.

表 3: Payoff of R vc R^c

$R = \{1,2\} \setminus R^c = \{3\}$	1	2
11	0	2
12	-1	-1
21	-1	-1
22	2	0

Example 2.3(cont'd)

No matter what strategy 3 chosen, for *R* 12 or 21 is wroth than 11 or 22. So, row 2 and row 3 can be deleted. Hence, both *R* and R^c have two strategies, Denote p = P(R = 11), $q = P(R^c = 1)$. then the expected value of *R* is

$$ER = p(1-q) \times 2 + (1-p)q \times 2.$$

Similarly,

$$ER^{c} = p(1-q) \times (-2) + (1-p)q \times (-2).$$

Hence, the Nash equilibrium can be calculated as

$$p^* = (1/2, 1/2)$$
 $q^* = (1/2, 1/2).$

It follows from (15) that ER = 1, $ER^c = -1$.

Example 2.3(cont'd)

So we define

$$v(\{1,2\}) = 1, \quad v(\{3\}) = -1.$$

Because of symmetry, the vector form of characteristic function $\boldsymbol{\upsilon}$ is

$$V_{\upsilon} = [0, 1, 1, 1, -1, -1, -1, 0].$$

III. Two Standard Cooperative Games

☞ Unanimity Game (无异议博弈)

Definition 3.1

 $G=(N,\upsilon)$ is called a unanimity game, if there exists a $\emptyset\neq T\in 2^N,$ such that

$$u_T(S) = \begin{cases} 1, & T \subset S \\ 0, & \text{Otherwise.} \end{cases}$$
(20)

Denote by \mathcal{G}_n^c the set of cooperative games with *n* players. Then each $G \in \mathcal{G}_n^c$ is uniquely determined by v. Since $v(\emptyset) = 0$,

$$\mathcal{G}_n^c \sim \mathbb{R}^{2^n - 1}.\tag{21}$$

Theorem 3.2

(i) The set of unanimity Games

$$\left\{\upsilon_T \middle| \emptyset \neq T \in 2^N\right\},\,$$

form a basis of \mathcal{G}_n^c . (ii) Let $v \in G^N$. Then

$$\upsilon = \sum_{T \in 2^N \setminus \emptyset} \mu_T \upsilon_T, \tag{22}$$

where

$$\mu_T = \sum_{S \subset T} (-1)^{(|T| - |S|)} \upsilon(S).$$
(23)

Example 3.3

Consider $G = (N = \{1, 2\}, v)$. We have subsets 2^N as:

$$S_1 = \{1, 2\}, \ S_2 = \{1\}, \ S_3 = \{2\}, \ S_4 = \emptyset.$$

By Definition 3.1, we have

$$egin{aligned} &u_{S_1}(S_1)=1, &u_{S_1}(S_2)=0, &u_{S_1}(S_3)=0, &u_{S_1}(S_4)=0, \ &u_{S_2}(S_1)=1, &u_{S_2}(S_2)=1, &u_{S_2}(S_3)=0, &u_{S_2}(S_4)=0, \ &u_{S_3}(S_1)=1, &u_{S_3}(S_2)=0, &u_{S_3}(S_3)=1, &u_{S_3}(S_4)=0, \end{aligned}$$

According to (22) and (23), we have

$$\upsilon = \mu_{S_1} \upsilon_{S_1} + \mu_{S_2} \upsilon_{S_2} + \mu_{S_3} \upsilon_{S_3},$$

where μ_{S_i} can be calculated by (23) as:

Example 3.3(cont'd)

$$\begin{split} \mu_{S_1} &= \sum_{S \subset S_1} (-1)^{(|S_1| - |S|)} \upsilon(S) = v(S_1) - v(S_2) - v(S_3), \\ \mu_{S_2} &= \sum_{S \subset S_2} (-1)^{(|S_2| - |S|)} \upsilon(S) = v(S_2), \\ \mu_{S_3} &= \sum_{S \subset S_3} (-1)^{(|S_3| - |S|)} \upsilon(S) = \upsilon(S_3). \end{split}$$

It follows that

$$v = [v(S_1) - v(S_2) - v(S_3)]v_{S_1} + v(S_2)v_{S_2} + v(S_3)v_{S_3}.$$
 (24)

Matrix Form of (23)Formally set:

$$\upsilon_{\emptyset}(S) := egin{cases} 1, & S = \emptyset \ 0, & ext{Otherwise}. \end{cases}$$

And we fix

$$\mu_{\emptyset}=0.$$

The formula (22) can be written as

$$\upsilon = \sum_{T \in 2^N} \mu_T \upsilon_T.$$
 (25)

Using structure vectors V_T , V_S to express v_T we have the following:

(i) ||N|| = 1:

表 4:
$$v_T$$
 for $|N| = 1$

$V_T \setminus V_S$	1	0
1	1	0
0	1	1

(ii)
$$||N|| = 2$$
:

表 5:
$$|N| = 2$$
 时的 v_T for $|N| = 2$

$V_T \setminus V_S$	11	10	01	0.0
11	1	0	0	0
10	1	1	0	0
0 1	1	0	1	0
0.0	1	1	1	1

(iii)
$$||N|| = 3$$
:

表 6: v_T for |N| = 3

$V_T \setminus V_S$	111	1 1 0	101	100	011	010	001	000
111	1	0	0	0	0	0	0	0
110	1	1	0	0	0	0	0	0
101	1	0	1	0	0	0	0	0
100	1	1	1	1	0	0	0	0
011	1	0	0	0	1	0	0	0
010	1	1	0	0	1	1	0	0
0 0 1	1	0	1	0	1	0	1	0
000	1	1	1	1	1	1	1	1

The v_T in above tables, denoted by U_n , is called *n*-th degree unanimity game, where n = |N|, $U_u \in \mathcal{B}_{2^n \times 2^n}$.

Proposition 3.4

The unanimity matrices can be constructed recursively as follows:

$$\begin{cases} U_1 &= \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \\ U_{k+1} &= \begin{bmatrix} U_k & 0 \\ U_k & U_k \end{bmatrix}, \quad k = 2, 3, \cdots.$$
 (26)

Theorem 3.5

The structure vector of v satisfies

$$V_{\upsilon} = (\mu_1 \ \mu_2 \ \cdots \ \mu_{2^n}) \ U_n.$$
 (27)

Hence, the coefficients of expansion (22) satisfy

$$(\mu_1 \ \mu_2 \ \cdots \ \mu_{2^n}) = V_{\upsilon} U_n^{-1},$$
 (28)

where

$$\begin{cases} U_1^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \\ U_{k+1}^{-1} = \begin{bmatrix} U_k^{-1} & 0 \\ -U_k^{-1} & U_k^{-1} \end{bmatrix}, \quad k = 2, 3, \cdots.$$
(29)

Example 3.6

Recall Example 3.3. Let n = 2. Using formula (27), we have

$$(\upsilon(S_1) \ \upsilon(S_2) \ \upsilon(S_3) \ 0) = (\mu_1 \ \mu_2 \ \mu_3 \ \mu_4) \ U_2.$$

Hence,

$$(\mu_1 \ \mu_2 \ \mu_3 \ \mu_4) = (v(S_1) \ v(S_2) \ v(S_3) \ 0) \ U_2^{-1}$$

$$= (v(S_1) \ v(S_2) \ v(S_3) \ 0) \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 1 & -1 & -1 & 1 \end{bmatrix}$$

$$= (v(S_1) - v(S_2) - v(S_3) \ v(S_2) \ v(S_3) \ 0) .$$

Equivalence of Characteristic Functions

Definition 3.7

Let (N, v) and (N, v') be two cooperative games. The characteristic functions v and v' are said to be strategically equivalent (策略等价), denoted by $v \sim v'$, if there exist $\alpha > 0$, $\beta_i \in \mathbb{R}$, $i = 1, 2, \cdots, n$, (n = |N|), such that

$$\upsilon'(\mathbf{R}) = \alpha \upsilon(\mathbf{R}) + \sum_{i \in \mathbf{R}} \beta_i, \quad \forall \mathbf{R} \in 2^N.$$
 (30)

Proposition 3.8

Assume $~\upsilon$ satisfies super-additivity, and $\upsilon\sim\upsilon'$, then $~\upsilon'$ also satisfies super-additivity.

☞ Normal Game (规范博弈)

Definition 3.9

A cooperative game is said to be a (0,1)-normal game (规范博弈), if it satisfies

(i)
$$v(\{i\}) = 0, \quad \forall i \in N;$$

(ii) $v(N) = 1.$

Proposition 3.10

A cooperative game G = (N, v), satisfying super-additivity, is strategy equivalent to a unique (0, 1)-normal game.

Verifying Normal Form
 Since

$$v(N) - \sum_{i=1}^{n} v(\{i\}) > 0.$$

Set

$$\alpha = \frac{1}{\upsilon(N) - \sum_{i=1}^{n} \upsilon(\{i\})} > 0;$$

$$\beta_i = -\alpha \upsilon(\{i\}), \quad i = 1, 2, \cdots, n.$$

Define

$$\upsilon'(\mathbf{R}) = \alpha \upsilon(\mathbf{R}) + \sum_{i \in \mathbf{R}} \beta_i, \quad \forall \mathbf{R} \in 2^N.$$

It is easy to see that v' is (0, 1)-normal game.

☞ Non-Essential Game (非本质博弈)

Definition 3.11

(N, v) is called a 0-normal game (零规范博弈), if

$$v(R)=0, \quad \forall R\in 2^N.$$

Consider a non-essential game (N, v), we have

$$\upsilon(\mathbf{R}) = \sum_{i \in \mathbf{R}} \upsilon(\{i\}), \quad \forall \mathbf{R} \in 2^{N}.$$

Let $\alpha = 1$, $\beta_i = -v(\{i\})$. Define

$$\upsilon'(\mathbf{R}) = \upsilon(\mathbf{R}) - \sum_{i \in \mathbf{R}} \upsilon(\{i\}).$$

We have $v'(R) = 0, \forall R \in 2^N$.

Proposition 3.12

Every non-essential game is equivalent to a 0-normal game.

IV. Imputation-Solution to Cooperative Game

☞ Imputation (分配)

Definition 4.1

Consider a cooperative game (N, υ) , an *n* dimensional vector $x = (x_1, x_2, \cdots, x_n) \in \mathbb{R}^n$ is called an imputation, if it satisfies

(i) Individual Rationality (个体合理性):

 $x_i \geq \upsilon(\{i\});$

(ii) Group Rationality)(群体合理性):

$$\sum_{i=1}^n x_i = \upsilon(N).$$

Remark 4.2

- Individual Rationality ensures the payoff of each person is no lesser that "non-cooperative" case. Group Rationality ensures that all income has been distributed, and no blank cheque.
- (ii) The "solution" for an cooperative game is a (reasonable) imputation.

Proposition 4.3

Non-essential game has only one imputation, which is:

$$x_i = v(\{i\}), \quad i = 1, 2, \cdots, n.$$
 (31)

☞ Core(核心)

Proposition 4.3

The set of imputations of an essential game is an *n* dimensional non-empty convex set, denoted by E(v).

Definition 4.4

Let $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$ be two imputations. x is said to dominate (优超) y, if there exists a $\emptyset \neq R \subset N$, such that
(i)

$$x_i > y_i, \quad i \in \mathbb{R}.$$
 (32)

(ii)

$$\upsilon(R) \ge \sum_{i \in R} x_i. \tag{33}$$

Definition 4.5

Given a cooperative game (N, v), the set of imputations, which can not be dominated by any imputation, is called the core(核心), denoted by C(v).

Theorem 4.6

Given a a cooperative game (N, v) with |N| = n, and $x \in \mathbb{R}^n$. $x \in C(v)$, if and only if, (i)

$$x(R) \ge v(R), \quad \forall R \subset N.$$
 (34)

(ii)

$$x(N) = v(N).$$
 (35)

(Necessity needs super-additivity of v.)

Numerical Method

(i) Constructing M_n : Convert $2^n - 1, 2^n - 2, \dots, 1, 0$ into binary forms as

$$b_1 = (1, 1, \cdots, 1, 1)$$
 $b_2 = (1, 1, \cdots, 1, 0)$ \cdots
 \cdots $b_{2^n-1} = (0, 0, \cdots, 0, 1)$ $b_{2^n} = (0, 0, \cdots$

Construct

$$M_n = [b_1^T, b_2^T, \cdots, b_{2^n}^T].$$
 (36)

(ii) Constructing N_n : Deleting first and last columns of M_n yields \ddot{M}_n . Set

$$N_n = \ddot{M}_n^T. \tag{37}$$

(iii) Constructing W_v : Delete first and last elements of V_v to get \ddot{V}_v . Define

$$W_{\upsilon} = \ddot{V}_{\upsilon}^{T}.$$
 (38)

(iv) Construct a set of equality-inequality as

$$\begin{cases} \sum_{i=1}^{n} x_i = \upsilon(N), \\ N_n x \ge W_{\upsilon}. \end{cases}$$
(39)

Proposition 4.7

Consider (N, v). $x \in C(v)$, if and only if, x satisfies (39).

Example 4.8

Recall Example 1.3(Selling Horse) We have

$$M_3 = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$W_{\upsilon} = [110, 100, 110, 0, 0, 0, 0, 0].$$

Then (39) becomes

Example 4.8(cont'd)

$$\begin{cases} x_1 + x_2 + x_3 = 110 \\ \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \ge \begin{bmatrix} 100 \\ 110 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$
 (40)

Example 4.8(cont'd)

The solution is:

$$\begin{cases} x_1 \in [100, \ 110] \\ x_2 = 0 \\ x_3 = 110 - x_1. \end{cases}$$

We conclude that

$$C(\upsilon) = \{(t, 0, 110 - t) \mid 100 \le t \le 110\}.$$

Remark 4.9

For a given $G = (N, v) \in \mathcal{G}_n$, the corner C(v) may not exist!

V. Shapley Value

Permutation Group S_n

Definition 5.1

(i) A permutation:

$$\sigma:\{1,2,\cdots,n\}\to\{1,2,\cdots,n\}$$

(ii) The set of permutations:

$$\mathbf{S}_n = \{ \Sigma \mid \Sigma : \mathcal{D}_n \to \mathcal{D}_n \}.$$

(iii)

$$T_{\sigma}^{i} = \{ j \mid \sigma_{j} < \sigma_{i} \}.$$

Example 5.2

(i)

$$\sigma = (1, 3, 4)(2, 5) \in \mathbf{S}_5.$$

(ii) Consider σ , then

$$\sigma(1) = 3, \ \sigma(2) = 5, \ \sigma(3) = 4, \\ \sigma(4) = 1, \ \sigma(5) = 2.$$

It is easy to see that:

$$T_{\sigma}^{3} = \{1, 4, 5\}, \\ T_{\sigma}^{5} = \{4\}.$$

Definition 5.3

Consider $G = (N, v) \in \mathcal{G}_n$. Define

$$\varphi_{i}(\upsilon) := \frac{1}{n!} \sum_{\sigma \in \mathbf{S}_{n}} \left[\upsilon \left(T_{\sigma}^{i} \cup \{i\} \right) - \upsilon \left(T_{\sigma}^{i} \right) \right], \\
i = 1, 2, \cdots, n.$$
(41)

Then

$$\varphi := (\varphi_1, \varphi_2, \cdots, \varphi_n) \in E(\upsilon)$$

is called a Shapley value.

Proposition 5.4

$$\sum_{i=1}^{n} \varphi_i(\upsilon) = \upsilon(N). \tag{42}$$
$$\varphi_i(\upsilon) \ge \upsilon(\{i\}). \tag{43}$$

Advantage of Shapley Value

Theorem 5.5

Shapley value is the only imputation, satisfying

- Efficiency Axiom (有效性公理);
- Symmetry Axiom (对称公理);
- Additivity Axiom (可加性公理).

喻 谢政,《对策论导引》,科学出版社,北京,2010.

- A Formula for Calculating Shapley Value
 - Step 1: Construct a sequence of vectors ℓ_k :

$$\begin{cases} \ell_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \mathbb{R}^2; \\ \ell_{k+1} = \begin{bmatrix} \ell_k + \mathbf{1}_{2^k} \\ \ell_k \end{bmatrix} \in \mathbb{R}^{2^{k+1}}, \\ k = 1, 2, 3, \cdots. \end{cases}$$
(44)

Example 5.6

$$\ell_2 = \begin{bmatrix} \ell_1 + \mathbf{1}_2 \\ \ell_1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \\ 0 \end{bmatrix}.$$

• Step 2: Construct $\eta_k \in \mathbb{R}^{2^k}$:

$$\eta_k = (\ell_k)!(k\mathbf{1}_{2^k} - \ell_k)!.$$
(45)

Example 5.7 $\eta_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \eta_2 = \begin{bmatrix} 2 \\ 1 \\ 1 \\ 2 \end{bmatrix}, \quad \cdots.$

• Step 3: Set $\zeta := \eta_{n-1}$. Split ζ equally into *k* blocks:

$$\zeta = \begin{bmatrix} \zeta_k^1 \\ \zeta_k^2 \\ \vdots \\ \zeta_k^k \end{bmatrix}, \quad k = 1, 2, 2^2, \cdots, 2^{n-1}$$

• Step 4: Define Ξ_n as:

$$\Xi_{n} = \frac{1}{n!} \begin{bmatrix} \zeta_{1} \\ -\zeta_{1} \\ -\zeta_{1} \end{bmatrix} \begin{pmatrix} \zeta_{2}^{1} \\ -\zeta_{2}^{1} \\ \zeta_{2}^{2} \\ -\zeta_{2}^{2} \end{pmatrix} \begin{pmatrix} \zeta_{4}^{1} \\ -\zeta_{4}^{1} \\ \zeta_{4}^{2} \\ -\zeta_{4}^{2} \\ \zeta_{4}^{3} \\ -\zeta_{4}^{3} \\ \zeta_{4}^{4} \\ -\zeta_{4}^{4} \end{pmatrix} \cdots \begin{pmatrix} \zeta_{2n-1}^{1} \\ -\zeta_{2n-1}^{1} \\ \zeta_{2n-1}^{2} \\ -\zeta_{2n-1}^{2} \\ \zeta_{2n-1}^{2n-1} \\ -\zeta_{2n-1}^{2n-1} \\ -\zeta_{2n-1}^{2n-1} \\ -\zeta_{2n-1}^{2n-1} \\ -\zeta_{2n-1}^{2n-1} \end{bmatrix}$$
(46)

Theorem 5.8

$$\varphi(\upsilon) = V_{\upsilon} \Xi_n.$$

(47)

References:

- Y. Wang, D. Cheng, X. Liu, Matrix expression of Shapley values and its application to distributed resource allocation, *Sci. China Inform. Sci.*, Vol. 62, 022201:1-022201:11, 1019.
- H. Li, S. Wang, A. Liu, M. Xia, Simplification of Shapley value for cooperative games via minimum carrier, *Contr. Theor. Tech.*, Vol. 19, 157-169, 2021.
- X. Xia, H. Li, X. Ding, Y. Liu, Matrix approach to calculation of Banzhaf value with applications, *Contr. Theor. Appl.*, Vol. 37, No. 2, 446-452, 2020.

Example 5.9

We calculate some Ξ_n for small *n*.

•
$$n = 2$$
:
 $\ell_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$;
 $\eta_1 = \begin{bmatrix} 1!(2-1-1)! & 0!(2-1-0)! \end{bmatrix}^T = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$
 $\Xi_2 = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -1 & 1 \\ -1 & -1 \end{bmatrix}$.

Example 5.9(cont's)

•
$$n = 3$$
:

$$\Xi_{3} = \frac{1}{6} \begin{bmatrix} 2 & 2 & 2 \\ 1 & 1 & -2 \\ 1 & -2 & 1 \\ 2 & -1 & -1 \\ -2 & 1 & 1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \\ -2 & -2 & -2 \end{bmatrix}.$$

Example 5.9(cont's)

 Ξ_4

• *n* = 4:

•

64 / 67

Example 5.10

Recall Example 1.3 (selling horse).

$$V_v = \begin{bmatrix} 110 & 100 & 110 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Using formula (47), The Shapley value is

$$\varphi(v) = V_v \Xi_3 = \begin{bmatrix} 71.67 & 16.67 & 21.67 \end{bmatrix}.$$

VI. Final Remarks

Remarks on Cooperative Game

- (i) Cooperative game (G = (N, v)) is another kind of games (vs non-cooperative game).
- (ii) Constant sum game has a natural cooperative game structure.
- (iii) Unanimity games form a basis for cooperative games $(\sim \mathbb{R}^{2^n-1}).$
- (iv) Normal games are canonical form of cooperative games.
- (v) Imputation is the purpose of cooperative game theory. Shapley value is one of the useful imputations.

谢谢!

Q&A