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Optimal Control of Logical Control Networks
Yin Zhao, Zhiqiang Li, Student Member, IEEE, and Daizhan Cheng, Fellow, IEEE

Abstract—This paper considers the infinite horizon optimal
control of logical control networks, including Boolean control
networks as a special case. Using the framework of game theory,
the optimal control problem is formulated. In the sight of the alge-
braic form of a logical control network, its cycles can be calculated
algebraically. Then the optimal control is revealed over a certain
cycle. When the games, using memory � (which means the
players only consider previous steps’ action at each step), are
considered, the higher order logical control network is introduced
and its algebraic form is also presented, which corresponds to
a conventional logical control network (i.e., � �). Then it is
proved that the optimization technique developed for conventional
logical control networks is also applicable to this -memory case.

Index Terms—Boolean network, cycle, higher order logical con-
trol network, logical control network, optimal control.

I. INTRODUCTION

I N the investigation of cellular networks, Kauffman firstly
introduced the Boolean network [1]. It has then caused an

ever increasing interest in the study of Boolean networks, since
it has been proved to be a useful tool in modeling of cell regula-
tion [2]–[4], and also be used as models of some complex sys-
tems such as neural networks, social and economic networks [5],
[6]. The first important topic is to find the topological structure
of Boolean networks, such as fixed points, cycles, and basins of
attractors, etc. [7]–[10]. Another challenging topic is its appli-
cation to analyzing genetic networks [11]–[13]. To manipulate
networks, the control of Boolean network is also a fundamental
topic [14], [15].

A node of a Boolean network can take value 0 or 1. A logical
network has the similar structure as the one of a Boolean net-
work, but allows its nodes to take values from a finite set, say
for a -valued logical network its nodes can take values from

. A -valued logical network
can approximate a real cellular regulatory network better than a
Boolean network. We refer to [16] and [17] for -valued logical
networks.

The -valued logical network is also an effective tool for
solving some problems in game theory [18]–[22]. When the
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TABLE I
PAYOFF BI-MATRIX

number of actions is 2, the Boolean control network is a proper
model to describe the dynamics of an infinitely repeated game.
Then the game is formulated as the optimal control problem of
a Boolean control network.

Recently, a semi-tensor product approach to analysis and con-
trol of Boolean networks has been proposed. [23] is a proper
reference for semi-tensor product. The framework and the struc-
ture analysis of Boolean networks are presented in [24] and [25].
Some fundamental control problems, such as controllability, ob-
servability, realization, and disturbance decoupling of Boolean
control networks, are investigated in [26]–[28]. The method has
also been extended to -valued logical networks [29].

The purpose of this paper is to investigate the optimal control
problem of logical control networks. The problem is motivated
by the Boolean games and it is based on the framework of game
theory. This model was firstly proposed in [30], in which the
infinitely repeated game between a human and a machine based
on the standard prisoners’ dilemma (PD) model is considered.
The purpose is to find a best human strategy when the machine
strategy is fixed. We give an example to describe this.

Example 1.1: We consider the model of infinitely repeated
PD [30].

The player 1 is a machine and player 2 is a person. Their
actions can be

The payoff bi-matrix is assumed to be as shown in Table I.
Assume the machine strategy, which depends on the

-memory, is fixed. It is defined as

(1)

where the machine strategy is considered as the state, is
a fixed logical function. The human strategy, , is considered
as the control.

Denote by the payoff of the human.
Our purpose is to design an optimal control to maximize the
superior limit of the average of human payoff as time goes to
infinity

(2)
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Note that when each player of a game has more than two
possible actions, it is necessary to consider a -valued logical
control network.

Using the semi-tensor product approach, we first investigate
the topological structure of logical control networks. Particu-
larly, finding cycles via network algebraic form is investigated
in detail. Then the optimal control is revealed by comparing av-
erage values over cycles. As a game using memory is con-
sidered, we propose higher order logical control network as its
model [31]. To solve the optimal control problem of such a net-
work, its algebraic form is reduced to one of conventional log-
ical networks. Then it is proved that the approach developed for
conventional logical network remains applicable.

The rest of the paper is organized as follows: Section II gives
a formulation for the problem. In Section III we first discuss
the topological structure of logical control networks. Then it is
revealed that the optimal control is achieved on an optimal tra-
jectory, which converges to a cycle, and hence it is computable.
Section IV considers the optimal control of logical control net-
works. The higher order logical control networks, which corre-
spond to the games using -memory, are discussed in Section V.
Section VI is a brief conclusion.

II. PROBLEM FORMULATION

For statement ease, we first introduce some notations.
• .

• ;
.

• : the -th column of the identity matrix .
• ; .
• : the -th column of matrix . Denoted by

the set of columns of
• : the -th block of matrix .
• Denote by the set of matrices. is

called a logical matrix if , have the
form of . That is,

Denote by the set of logical matrices.
• If , by definition it can be expressed as

. For the sake of compactness, it is briefly
denoted as . Its columns set can also
be denoted as .

• is a swap matrix. We refer to [23] for its definition
and properties.

Definition 2.1: [23]: Let and and
denote the least common multiplier of and by .
Then the semi-tensor product of and is defined as

(3)

Remark 2.2: It is obvious that the semi-tensor product of ma-
trices is a generalization of conventional matrix product, thus,
the symbol can be omitted hereafter. We refer to [24] for the
case when is a multiplier of , and for some numer-
ical examples. We also refer to [23] for its properties. In fact,

all major properties of conventional matrix product remain un-
changed under this generalization.

The dynamics of a Boolean network can be described as

...
(4)

where and are logical functions.
A Boolean control network is a Boolean network with

input(s) and output(s). Throughout this paper the outputs are
not concerned, then its state dynamics can be described as

...
(5)

where , with state variables, controls and
logical functions.

We call the system (4) and (5) the conventional Boolean net-
work and conventional Boolean control network, respectively.
As mentioned in the introduction, they have been discussed
widely.

A -valued logical network (or -valued logical control net-
work) has the same form as (4) (or (5), respectively), except that
the state variables (and the controls ) take values from .

To get a matrix expression of the dynamics of a Boolean
network, called the algebraic form of the network, we identify

and . Then in vector form we have .
Under this vector form we denote . Then referring
to [24], there exists a unique , such that (4) can be
expressed as

(6)

Equation (6) is called the algebraic form of (4).
For Boolean control network, we also denote .

Then there exists a unique such that the alge-
braic form of (5) is expressed as

(7)

Similarly, to get the algebraic form of a -valued logical (con-
trol) network, we identify

Then one sees that the algebraic form of a -valued logical (con-
trol) network is the same as (6) ((7)) except that

.
We refer to [24], [25], [29] for calculating the algebraic forms.
When the updated values of the nodes of a logical network

depend only on the current values, we have the aforementioned
dynamic equations. But if the updated values depend on the past

values, a -th order dynamic model is required.
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A -th order logical network is described as

...

(8)
Similarly, a -th order logical control network has its state

dynamics as

...

(9)
For the system (7) (or (9)), consider the objective function as

(10)

where is a function from to . Our purpose is to find
an optimal control to maximize , that is

III. TOPOLOGICAL STRUCTURE OF LOGICAL CONTROL

NETWORKS

To deal with the optimal control of a logical control network,
its topological structure needs to be considered first. Particu-
larly, later on, we will see that the optimal trajectory will con-
verge to a certain cycle, so calculating cycles becomes a key
issue.

A -valued control network can be expressed as (5) with
. Its algebraic form is (7) with ,

and .
Denote the control-state (product) space as

Using vector form, we set , then
. Later on, we will see that the optimal control will be

reached at an optimal trajectory which converges to a fixed cycle
in . We, therefore, need to investigate the cycles in the control-
state space .

In vector form, the graph in has ,

as its vertices. An edge , which is briefly denoted

as , exists if can be reached from
by choosing a matching . A cycle is a

path , in which

Fig. 1. State transfer graph.

there exists a integer such that , the smallest
such is called the length of the cycle.

For a cycle of length , because can be
decomposed uniquely to , the cycle can be
described as

For compactness, we denote it as

(11)

Then we have the following results.

Proposition 3.1: An edge exists, if and only if

(12)

Proof: By definition, the edge exists, if and
only if there exists such

(13)

It is easy to check that , thus (13) yields

(14)

Note that can be factorized uniquely into ,
where . The proposition is proved.

Example 3.2: Assume a Boolean control network is

(15)

where , and

Note that ,
then we can get the state transfer graph as Fig. 1.

From Fig. 1 we can see that (1,1) and (1,0) are fixed points,
, ,

, ,
,

are all the cycles with length less than or equal
to 4.

In simple case, the fixed points and cycles can be found from
the control-state graph directly. But when and are larger, it
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is difficult to draw the graph as above. Thus, we need to develop
formulas to compute all the cycles algebraically.

From (7), we have

(16)

where

Before calculating the cycles, we need some notations.
• Let , is the set of proper factors of .
• Let , then

(17)

For finding , we can decompose to
to see whether is cyclic. We give an example to
explain these notations.

Example 3.3:
• Let . Then .
• Let be given. Then using an obvious formula

, there exists at most one for every
such that .

Say, , .
— Let , then

.
Hence, .

— Let , , thus there is no solution.
Hence, .

— Let , .
So .

In the following we simply use for , the default
and are assumed to be the type of logic and the number of

inputs.
Theorem 3.4: The number of cycles of length in the control-

state graph of -valued logical control network (7) is inductively
determined by

(18)

where

Proof: Each cycle in is a product of cycles in state space
and control space, thus, we look for the cycle in state space first.

If is in a cycle in state space of length , from (16) we
have

If are fixed, say ,
then

If , that means the -th element of
is 1. So the cycle with length in state space under the given
controls is

.
Thus, multiplying the cycle and the given , we obtain a cycle
of length in control-state space. Hence, the number of length
cycles including multi-fold ones is .

It is obvious that if is a proper factor of , and is in the
cycle of length under and the cycle
of length under respectively, then
we can obtain the same cycle in control-state space, if and only

if . Moving away these multi-fold cycles, we
obtain (18).

From the proof of Theorem 3.4, we can see that the cycles
can be found by the following algorithm:

1) For length , calculate .
2) Denote by the -th element of . For

, check the diagonal elements of , if
, and for all , then

is in the cycle of length under
. So the cycle is

.
3) If , then set , and return to 2); else set

, and return to 1).
Definition 3.5: A cycle

is called a
simple cycle, if it satisfies

(19)

Example 3.6: Recall Example 3.2. Since

we have , . Hence and
are fixed points under control . It follows that the fixed

points in control-state space are

which are simple ones. Next, since

we have ,
, , so
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, thus, . and
are in cycles of length 2 under . We then
can obtain a cycle of length 2 in control-state space as

which is also simple. Consider

Since
, so

,
, , 2, 3, 5, 8, we have,

. and are in cycles of length 3 under
, , and

. We then can obtain the cycles of length 3 in
control-state space as

Finally, since

we have , , 4, 6, 7, 10, 11, 13, 16,
so for , 6, 7, 10, 11, 13, otherwise

, and hence . and are in cycles of
length 4 under ,

, , ,
, and . Then we can obtain the cycles

of length 4 in control-state space as

This result is the same as what we observed from the graph in
Example 3.2.

IV. OPTIMAL CONTROL OF LOGICAL CONTROL NETWORKS

In this section we consider the optimal control and the optimal
trajectory of logical control networks. Similar to [30], we can
prove the following result:

Theorem 4.1: For the -valued control network (5) with the
objective function (10), there exists an optimal control
such that the objective function is maximized and the trajectory
of will become periodic after a finite time.

Remark 4.2: The difference between the above theorem and
Theorem 2.1 in [30] for the case of 1-memory is that and

here are multi-dimensional and have values. But after
converting them to the graph, there is no essential difference.
So the proofs are the same. In the sequel, using the matrix ex-
pression of logical functions, we can give a method to find the

optimal trajectory and obtain a which is called the optimal
control matrix, such that

Proposition 4.3: The limit

(20)

always exits.
Proof: Consider the system (5). According to Theorem 4.1,

an optimal trajectory will converge to an attractor. As a limit,
is the average of an attractor (fixed point or cycle).

For a cycle
, denote

(21)

Proposition 4.4: Any cycle contains a simple cycle
such that

(22)

Proof: Denote by
an arbitrary

cycle. If it is a simple cycle, the result is trivial. Otherwise, as-
sume , , and

is a simple cycle. If ,
we are done.

Otherwise, we remove , then the remains form a new cycle
, because . Now

. If is a simple cycle, we are done.
Otherwise, we can find a simple cycle such that either

it satisfies (22) or remove it. Continuing this process, we can
finally find a simple cycle such that (22) holds.

Denote by the reachable set of the a state , we say a
cycle if any element of is in .

Definition 4.5: Giving the initial state , a cycle is called
an optimal cycle if

(23)

By (16), at th step, the initial state can reach

if ,

If is reached from at -th step, , the path from
the initial state to must at least pass a state twice. Similar
to the proof of Proposition 4.4, we can reduce the path, finally,
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can be reached from at -th step, .
Thus,

(24)

Since from , can be reached firstly, and
for each , it can reach .
Thus, simply implementing DFS (Depth-First-Search) algo-
rithm, we can get the reachable set.

According to the above argument, we can find the optimal
cycle only from all the simple cycles contained in .
Denote the shortest path from initial state to by

(25)
where

We call (25) the optimal trajectory.
Next, we will prove the existence of the optimal control ma-

trix .
Theorem 4.6: Consider the -valued logical control network

(5) with the objective function (10). Let the optimal trajectory
be (25), and the optimal control be . Then there exists a
logical matrix , satisfying

(26)

Proof: According to Proposition 4.4, we can find an op-
timal cycle just from all simple cycles. Because the length of a
simple cycle can not be greater than , assume the initial state
of a trajectory is , we can find all cycles with length less
than or equal to which can be reached from the initial state,
and then find out the optimal trajectory (25). It is easy to know
that , so we can get columns of the op-
timal control matrix , which satisfy

(27)

and the other columns of can be arbi-
trary. Thus is constructed.

Example 4.7: Recall Example 3.2 and Example 3.6 again.
Set

Assume the initial state , from the result of Example
3.6 we can see is obviously the
optimal cycle. Choosing , the optimal cycle and the
shortest path from to the cycle is

Hence, , can be either 1 or 2.

TABLE II
PAYOFF BI-MATRIX

Example 4.8: We consider the following infinitely repeated
game. Both of player 1 and player 2 have three actions, {L, M,
R}. The payoff bi-matrix is assumed to be the Table II.

It is easy to check that (M, M), which means player 1 choose
M and player 2 also choose M, is the unique Nash equilibrium of
the one-stage game, but it is obvious that (R, R) is more efficient
than (M, M). In the infinitely repeated game, assume player 2’s
strategy is fixed to play R in the first stage, in the -th stage, if the
outcome in the -th stage is (R, R) then plays R, otherwise,
plays M. This strategy is called the “trigger strategy” [32].

Denote , , . The above game can be
rewrote as

(28)

where

, as the state, is the action of player 2 at t-th stage;
, as the control, is the action of player 1 at t-th stage.

As we know, the trigger strategy is the Nash equilibrium of
an infinitely repeated finite game in which the payoff function
is

where is payoff at -th stage and is discount factor, when
is sufficiently close to one [32].

Ignoring the discount factor, our payoff functions for player
1 and player 2 are

where

An natural question is whether the trigger strategy is still the
Nash equilibrium in this game.

Player 2 has adopted the trigger strategy, we want to find the
best response for player 1. Then the question is converted to
finding the optimal control of 3-valued logical control network
(28), which maximizes .
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Now we calculate the cycles

thus , , ,
, . is a fixed point under , , 2, 3, and

is a fixed point under . so the fixed points of system (28)
are

, , . For

Similarly, we obtain
, , , 3, 4, 6, 7, 8. Thus

. is in cycles of length 2 with ,
, 3, 4, 6, 7, 8. Then we can find the cycles of length 2 as

By (18) we have , ,
, , 14, 27, and . is in

cycles of length 3 with ,
. Then we can find the cycles of length 3

as

There are also lots of cycles of length greater than or equal to
4. But we have proved that to deal with the optimal control of
this game, finding all the cycles of length less than or equal to
3 is enough.

As a trigger strategy, the initial state is , its reachable
set is

Using the result above, all the simple cycles contained in
are , , and

, and among them is the optimal cycle.
Choosing , then

where the first eight columns can be arbitrary.
Thus we can choose

which is the trigger strategy. We conclude that the best response
for player 1 is to adopt the trigger strategy if player 2 has adopted
the trigger strategy. Because the payoffs are symmetrical, so if
player 1 has adopted the trigger strategy, the best response for
player 2 is also trigger strategy. That means the trigger strategy
is a Nash equilibrium of this game.

Remark 4.9: The major obstacle in applying above results to
practical networks is the computational complexity. It is easy to
see that the computational complexity depends on the compu-
tation of , whose complexity is , .
Thus, an efficient new numerical method has to be developed to
deal with large scale networks in further works.

V. OPTIMAL CONTROL OF HIGHER ORDER LOGICAL CONTROL

NETWORKS

To deal with -th order logical control networks, we first con-
sider how to convert it to a first order form. We need the fol-
lowing lemma.

Lemma 5.1: [29]:
1) Let . Then

(29)

where

is called the base- order reducing matrix.
2) Assume , then

(30)

where

Lemma 5.2: Assume , set

Then
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Proof: If , then

Whatever is, we also have

In the following we simply use , , and
for , , and respectively, the default is
assumed to be the type of logic.

Denote , . Each equa-
tion of the -th order logical control network (9) can be written
into its algebraic form as

...

(31)
Multiplying the equations in (31) together, we obtain

(32)

where

Denote , , then (32)
can be converted to

Then we have

(33)

where

Note that , here is not completely independent,
they should satisfy

Thus, (32) can be converted to

(34)

Similar to (16), if is in a cycle of length , we have

(35)

where

can be simplified as

...

where

Moreover, must hold, that is

(36)

Assuming , where , , the
product becomes as shown in
the equation at top of the next page.

Then (35) is converted to

(37)
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where

Note that now in (37), , are in-
dependent. Refer to the method developed in Section IV, we can
search the cycles of length of (34) by using (37) and checking
the trace of , if its -th entry equals 1,
is in cycle of length under .
Using (36) we can get , then we can ob-
tain the cycle. Notice that when is a proper factor of , and

is in the cycles of length and simultaneously under
and respectively,

then we have the same cycle in control-state space, if and only
if . To count the number of cycles, we should
take out these repeated cycles. Thus, similar to Theorem 3.4, we
have the following theorem.

Theorem 5.3: The number of length cycles of the logical
control network (34) is inductively determined by

(38)

where

Proposition 5.4: There is a one-to-one correspondence be-
tween the cycles of system (34) and the cycles of higher order
logical control network (9).

Proof: Construct a function
as follows: Since can be decomposed uniquely to

, set

(39)

Denote by and all the cycles of system (34) and the
higher order logical control network (9) respectively. Then we

define as follows: For any
,

(40)
Set , , , ,

whenever . Because

is a cycle in . Thus, is well defined. Then we prove:
1) is surjective. For any cycle ,

, let
, where

, . Then we can
easily check that .

2) is injective. If there is another cycle
such that ,

then there exists an , such that
, which means that the first factors

of form , and the first factors of
form . By (34) we know that the first
factors of equal to the last factors of

, meanwhile the first factors of equal
to the last factors of . Thus we obtain

Then it is obvious that .

Now we consider the optimal control of -th order logical
network. Set

(41)

where

By Lemma 5.2 it is easy to see ,
, then maximizing (41) is equivalent to

maximizing (10).
Proposition 4.4 is no longer true, but it is easy to see that

the optimal cycles (in ) can be found in the cycles with no
repeated element. Thus we can only search from the cycles of
length less than or equal to the number of elements of the reach-
able set of the initial state .
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Then, the following theorem can be obtained.
Theorem 5.5: For the -th order logical control network (9)

with the objective function (10), there exists an optimal logic
control matrix such that the objective function is maximized
and the trajectory of will become periodic
after a certain finite time.

Proof: We can use (34) and (41) to replace (9) and (10) re-
spectively to find the optimal control. (34) can also be described
as a directed graph with finite vertices, so similar to Theorem
4.1, we can find the optimal cycle in . Then using (40), the
optimal cycle in can be obtained. Denote the shortest path
from initial state to by

where

In the following, if , when and
, then we set . Using this convention, we

can find , satisfying

(42)

where

and the other columns of can be arbi-
trary. Then the higher order logical control network (9) is con-
verted to

(43)

Example 5.6: Recall Example 1.1, and refer to [30].
Assume the machine uses the strategy “Two Tits For One
Tat”, it will take the action only when

. Denote ,
and let , and assume the initial

state and control is , then (1)
and the human payoff can be rewritten as

(44)

where

and

Set , ,
, from (33), (44) can be converted to

(45)

where

From (28), ,
,

,
.

It is easy to check the reachable set of the initial state is

which have ten elements.
By Theorem 5.3, we can obtain the cycles of length less than

or equal to 10 with no repeated elements as

It is easy to calculate that the optimal cycle is , which has the
average human payoff 5/3. This result coincides with the one in
[30].

The optimal trajectory for system (45) is

Thus we can find the optimal trajectory for system (44) as

Then

where can be chosen arbitrarily from {1, 2}.

VI. CONCLUSION

This paper considered the infinity horizon optimal control of
logical control networks, which are either conventional (with
order one) or with higher orders. To develop a necessary tool,
we first discussed the topological structure of logical control
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networks, and developed an algorithm with formulas to compute
the cycles. For the optimal control under the given objective
function, we obtained two main results: (1) the optimal control
always exists and the trajectory under the optimal control will be
periodic after finite time; (2) there is a logical matrix by which
the the optimal control can be expressed. Then the problem was
also investigated for higher order logical control networks. After
certain algebraic transformation, using the properties of semi-
tensor product and techniques developed in the previous work,
the systems can be converted into conventional (i.e. first order)
logical networks. Then the method developed in the first part
remains applicable.
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