聊城大学矩阵半张量积理论与应用研究中心2020年暑期研修班

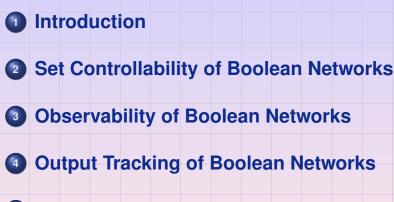
Set Controllability, Observability and Output Tracking of Boolean Networks

Haitao Li (李海涛)

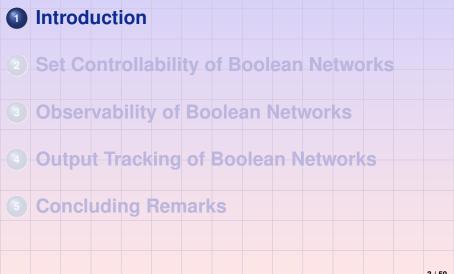
School of Mathematics and Statistics, Shandong Normal University

(E-mail: haitaoli09@gmail.com)

August 18, 2020



5 Concluding Remarks



Boolean Networks

- With the rapid development of systems biology and medical science, Boolean networks (BNs) become an active research topic in biology, physics and engineering.
 - The control of BNs is important for the disease treat ment and pharmaceutical preparation *.
- A major goal of systems biology is to develop suitable mathematical tools for the analysis and control of complex biological systems^{*}.

T. Ideker, et al., A new approach to decoding life: Systems biology, Annu. Rev. Genomics Hum. Genet., 2001, 2: 343-372.

T. Akutsu, et al., Control of Boolean networks: Hardness results and algorithms for tree structured networks, J. Theoret. Biol., 2007, 244(4): 670-679.

Boolean Networks

- With the rapid development of systems biology and medical science, Boolean networks (BNs) become an active research topic in biology, physics and engineering.
- The control of BNs is important for the disease treatment and pharmaceutical preparation *.
- A major goal of systems biology is to develop suitable mathematical tools for the analysis and control of complex biological systems^{*}.

T. Ideker, et al., A new approach to decoding life: Systems biology, Annu. Rev. Genomics Hum. Genet., 2001, 2: 343-372.

T. Akutsu, et al., Control of Boolean networks: Hardness results and algorithms for tree structured networks, J. Theoret. Biol., 2007, 244(4): 670-679.

Boolean Networks

- With the rapid development of systems biology and medical science, Boolean networks (BNs) become an active research topic in biology, physics and engineering.
- The control of BNs is important for the disease treatment and pharmaceutical preparation *.
- A major goal of systems biology is to develop suitable mathematical tools for the analysis and control of complex biological systems^{*}.

T. Ideker, et al., A new approach to decoding life: Systems biology, Annu. Rev. Genomics Hum. Genet., 2001, 2: 343-372.

^{*}T. Akutsu, et al., Control of Boolean networks: Hardness results and algorithms for tree structured networks, J. Theoret. Biol., 2007, 244(4): 670-679.

Logical Networks

- Classification of logical networks: BNs, multi-valued logical networks, mix-valued logical networks.
 - Applications of logical networks: circuit design, finite automata, game theory, graph theory, fuzzy control, feedback register, and so on.
 - Existing methods: computer simulation, polynomial the ory over finite field, semi-tensor product of matrices.

Logical Networks

- Classification of logical networks: BNs, multi-valued logical networks, mix-valued logical networks.
- Applications of logical networks: circuit design, finite automata, game theory, graph theory, fuzzy control, feedback register, and so on.
 - Existing methods: computer simulation, polynomial the ory over finite field, semi-tensor product of matrices.

Logical Networks

- Classification of logical networks: BNs, multi-valued logical networks, mix-valued logical networks.
- Applications of logical networks: circuit design, finite automata, game theory, graph theory, fuzzy control, feedback register, and so on.
- Existing methods: computer simulation, polynomial theory over finite field, semi-tensor product of matrices.

Logical Networks

Consider the following Boolean model of signal transduction networks*:

ſ	$(x_1(t+1) = x_8(t),$	
I	$x_2(t+1) = x_1(t),$	
	$x_3(t+1) = x_2(t),$	
J	$x_4(t+1) = x_8(t),$	(1)
١	$x_5(t+1) = x_4(t),$	(1)
	$x_6(t+1) = x_3(t) \lor x_5(t),$	
	$x_7(t+1) = x_8(t),$	
l	$x_8(t+1) = x_6(t) \wedge \neg x_7(t),$	

where x_1 stands for the nitric oxide synthase (NOS), x_2 represents the nitric oxide (NO), x_3 is the guanyl cyclase (GC), x_4 is the phospholipase C (PLC), x_5 represents the inositol-1,4,5-trisphosphate (InsP3), x_6 is the Ca²⁺ influx to the cytosol from intracellular stores (CIS), x_7 stands for the Ca²⁺ATPases and Ca²⁺/H⁺ antiporters responsible for Ca²⁺ <u>efflux from the cytosol (Ca²⁺ATPase)</u>, and x_8 is the cytosolic Ca²⁺ increase (Ca²⁺). <u>*</u>A. Saadatpour, I. Albert, R. Albert, Attractor analysis of asynchronous Boolean

models of signal transduction networks, J. Theoret. Biol., 2010, 266: 641-656.

Logical Networks

The "minimal" Boolean model for the lactose operon in Escherichia coli^{*} is given as follows:

$$\begin{cases} x_1(t+1) = \neg u_1(t) \land (x_3(t) \lor u_2(t)), \\ x_2(t+1) = x_1(t), \\ x_3(t+1) = \neg u_1(t) \land [(x_2(t) \land u_2(t)) \\ \lor (x_3(t) \land \neg x_2(t))], \end{cases}$$
(2)

where $x_1 \in D$ denotes the mRNA, $x_2 \in D$ the lacZ polypeptide, $x_3 \in D$ the intracellular lactose, $u_1 \in D$ the external glucose, and $u_2 \in D$ the external lactose.

^{*}R. Robeva, T. Hodge, Mathematical Concepts and Methods in Modern Biology: Using Modern Discrete Models, Academic Press, 2013.

Logical Networks

Consider a networked evolutionary game (NEG) consisting of four players, in which the set of players is denoted by $N = \{P_1, P_2, P_3, P_4\}$ and the network graph of the game is string. The neighborhood of each P_i is denoted by U(i). The basic game of this NEG is the Rock-Scissors-Paper game, whose payoff matrix is given in Table 1, where "Rock", "Scissors" and "Paper" are denoted by "1", "2" and "3", respectively. Hence, all the players have the same set of strategies: $S = \{1, 2, 3\}$.

Table 1: Payoff Matrix

$P_1 \setminus P_2$	1	2	3
1	(0, 0)	(1, -1)	(-1, 1)
2	(-1, 1)	(0, 0)	(1, -1)
3	(1, -1)	(-1, 1)	(0, 0)

Logical Networks

Suppose that the game can repeat infinitely. At each time, P_i only plays the Rock-Scissors-Paper game with its neighbors in U(i), and its aggregate payoff $c_i : S^{|U(i)|} \to \mathbb{R}$ is the sum of payoffs gained by playing with all its neighbors in U(i), that is,

$$c_i(P_i, P_j | j \in U(i)) = \sum_{j \in U(i)} c_{ij}(P_i, P_j),$$
(3)

where $c_{ij}: S \times S \to \mathbb{R}$ denotes the payoff of P_i playing with its neighbor $P_j, j \in U(i)$. The strategy updating rule is: For each $i = 1, 2, P_i(t+1)$ is updated by the best strategy from strategies of its neighbors in U(i) at time t. Precisely, if $j^* = \arg \max_{j \in U(i)} c_j(P_j, P_k | k \in U(j))$, then $P_i(t+1) = P_{j^*}(t)$. When the neighbors with maximum payoff are not unique, say, $\arg \max_{j \in U(i)} c_j(P_j, P_k | k \in U(j)) := \{j^*_1, \cdots, j^*_r\}$, we choose $j^* = \min\{j^*_1, \cdots, j^*_r\}$. According to the strategy updating rule, we obtain the following 3-valued logical network:

$$P_i(t+1) = f_i(P_1(t), P_2(t), P_3(t), P_4(t)),$$
(4)

where f_i , i = 1, 2, 3, 4 are 3-valued logical functions, which can be uniquely determined by the strategy updating rule.

Semi-Tensor Product of Matrices

Prof. Daizhan Cheng developed the semi-tensor product (STP) of matrices for the analysis and control of logical networks^{*}.

 $A \ltimes B = (A \otimes I_{\frac{\alpha}{p}})(B \otimes I_{\frac{\alpha}{p}}),$

where $\alpha = lcm(n,p)$ denotes the least multiple of n and

The main advantage of \$TP: converting a logical network into a (bi)linear form, which makes a bridge be-

tween logical networks and classic control theory.

^{*}D. Cheng, H. Qi, Z. Li, Analysis and Control of Boolean Networks: A Semi-tensor Product Approach, London: Springer, 2011.

Semi-Tensor Product of Matrices

- Prof. Daizhan Cheng developed the semi-tensor product (STP) of matrices for the analysis and control of logical networks^{*}.
- ➡ The STP of $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$ is

$$A \ltimes B = (A \otimes I_{\frac{\alpha}{n}})(B \otimes I_{\frac{\alpha}{n}}), \tag{5}$$

where $\alpha = lcm(n, p)$ denotes the least multiple of n and

р.

The main advantage of STP: converting a logical network into a (bi)linear form, which makes a bridge be-

tween logical networks and classic control theory

^{*}D. Cheng, H. Qi, Z. Li, Analysis and Control of Boolean Networks: A Semi-tensor Product Approach, London: Springer, 2011.

Semi-Tensor Product of Matrices

- Prof. Daizhan Cheng developed the semi-tensor product (STP) of matrices for the analysis and control of logical networks^{*}.
- ➡ The STP of $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$ is

$$A \ltimes B = (A \otimes I_{\frac{\alpha}{n}})(B \otimes I_{\frac{\alpha}{n}}), \tag{5}$$

where $\alpha = lcm(n,p)$ denotes the least multiple of n and

- р.
- The main advantage of STP: converting a logical network into a (bi)linear form, which makes a bridge between logical networks and classic control theory.

^{*}D. Cheng, H. Qi, Z. Li, Analysis and Control of Boolean Networks: A Semi-tensor Product Approach, London: Springer, 2011.

Semi-Tensor Product of Matrices

Given a logical function $f : \mathcal{D}^s \mapsto \mathcal{D}$. There exists a unique structural matrix $M_f \in \mathcal{L}_{2 \times 2^s}$ such that

$$f(x_1, x_2, \cdots, x_s) = M_f \ltimes_{i=1}^s x_i, \quad x_i \in \Delta := \{\delta_2^1, \delta_2^2\}.$$
 (6)

An algebraic state space representation approach is established for logical networks.

E. Fornasini, M. Valcher, Recent developments in Booleah networks control, Journal of Control and Decision, 2016, 3(1): 1-18.

J. Lu, H. Li, Y. Liu, F. Li, Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems, IET Control Theory & Applications, 2017, 11(13): 2040-2047.

Semi-Tensor Product of Matrices

Given a logical function $f : \mathcal{D}^s \mapsto \mathcal{D}$. There exists a unique structural matrix $M_f \in \mathcal{L}_{2 \times 2^s}$ such that

$$f(x_1, x_2, \cdots, x_s) = M_f \ltimes_{i=1}^s x_i, \quad x_i \in \Delta := \{\delta_2^1, \delta_2^2\}.$$
 (6)

An algebraic state space representation approach is established for logical networks.

^{*}E. Fornasini, M. Valcher, Recent developments in Boolean networks control, Journal of Control and Decision, 2016, 3(1): 1-18.

J. Lu, H. Li, Y. Liu, F. Li, Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems, IET Control Theory & Applications, 2017, 11(13): 2040-2047.

Semi-Tensor Product of Matrices Algebraic form of (1) is

x(t+1) = Lx(t),

where

L =	δ ₂₅₆ [2	148	1	147 2 1	48 2 14	8 2 148	1 147	2 148	2 148	
	10 1	56	9 15	55 10 15	6 10 156	5 10 156	9 155	10 156 1	0 156	
	2	148	1	147 2 1	48 2 14	8 6 152	5 151	6 152	6 152	
	10 1	56	9 15	5 10 15	6 10 156	5 14 160	13 159	14 160 1	4 160	
	34 1	80	33 17	9 34 18	0 34 180	34 180	33 179	34 180 3	4 180	
	42 1	88 ·	41 18	87 42 18	8 42 188	8 42 188	41 187	42 188 4	2 188	
	34 1	80 3	33 17	9 34 18	0 34 180	38 184	37 183	38 184 3	8 184	
	42 1	88 4	41 18	87 42 18	8 42 188	8 46 192	45 191	46 192 4	6 192	
	66 2	12	65 21	1 66 21	2 66 212	2 66 212	65 211	66 212 6	6 212	
	74 2	20	73 21	9 74 22	0 74 220	0 74 220	73 219	74 220 7	4 220	
	66 2	12	65 21	1 66 21	2 66 212	2 70 216	69 215	70 216 7	0 216	
	74 2	20	73 21	9 74 22	0 74 220	78 224	77 223	78 224 7	8 224	
	98 2	44	97 24	3 98 24	4 98 244	98 244	97 243	98 244 9	8 244	
	106 25	2 10	5 251	106 252	106 252	106 252 1	05 251 1	06 252 10	6 252	
	98 24	49	7 243	3 98 244	98 244	102 248 1	01 247 1	02 248 10	2 248	
	106 252	105 :	251 1	06 252 1	06 252 11	0 256 10	9 255 110	0 256 110	256].	

Semi-Tensor Product of Matrices

The main advantage of STP: By the STP method, a logical expression can be converted into a linear (bilinear) form.

Recent Results:

- Analysis and Control of BNs: Controllability, Observability, Realization, Identification, Disturbance Decoupling, Optimal Control, etc.;
- Model Generalization*: Delayed Logical Networks, Probabilistic Logical Networks, Asynchronous Logical Networks, Switched Logical Networks, Logical Networks with Impulsive Effect.

 Applications^{*}: Fault Detection of Circuits, Graph Coloring, Game Theory, Fuzzy Control, Finite Automata, Nonlinear Feedback Shift Register, Smart Grid, Vehicle Control, etc.

H. Li, G. Zhao, P. Guo, Z. Liu, Analysis and Control of Finite-Value Systems, CRC Press, 2018.

^{*}H. Li, G. Zhao, M. Meng, J. Feng, A survey on applications of semi-tensor product method in engineering, Science China Information Sciences, 2018, 61(1): 010202.

Controllability and Observability of BNs

- Controllability and observability of BNs are two fundamental properties^{*}.
 - Controllability means the reachability from any initial state to any terminal state, which provides a reachable set approach to the control design of BNs .
 - Observability means to distinguish any two different initial states from a piece of output trajectories, which is important for identification and observer design.

D. Cheng, H. Qi, Controllability and observability of Boolean control networks, Automatica, 2009, 45(7): 1659-1667.

R. Li, M. Yang, T. Chu, State feedback stabilization for probabilistic Boolean networks, Automatica, 2014, 50(4): 1272-1278.

Controllability and Observability of BNs

- Controllability and observability of BNs are two fundamental properties^{*}.
- Controllability means the reachability from any initial state to any terminal state, which provides a reachable set approach to the control design of BNs^{*}.

Observability means to distinguish any two different initial states from a piece of output trajectories, which is important for identification and observer design.

D. Cheng, H. Qi, Controllability and observability of Boolean control networks, Automatica, 2009, 45(7): 1659-1667.

^{*}R. Li, M. Yang, T. Chu, State feedback stabilization for probabilistic Boolean networks, Automatica, 2014, 50(4): 1272-1278.

Controllability and Observability of BNs

- Controllability and observability of BNs are two fundamental properties^{*}.
- Controllability means the reachability from any initial state to any terminal state, which provides a reachable set approach to the control design of BNs^{*}.
- Observability means to distinguish any two different initial states from a piece of output trajectories, which is important for identification and observer design.

^{*}D. Cheng, H. Qi, Controllability and observability of Boolean control networks, Automatica, 2009, 45(7): 1659-1667.

^{*}R. Li, M. Yang, T. Chu, State feedback stabilization for probabilistic Boolean networks, Automatica, 2014, 50(4): 1272-1278.

Recent Works on Controllability

Y. Zhao, H. Qi, D. Cheng, Input-state incidence matrix of Boolean control networks and its applications, *Systems & Control Letters*, 2010, 59(12): 767-774.
 D. Laschov, M. Margaliot, Controllability of Boolean control networks via the Perron-Frobenius theory, *Automatica*, 2012, 48(6): 1218-1223.

✓ Q. Zhu, Y. Liu, J. Lu, J. Cao, Further results on the controllability of Boolean control networks, *IEEE Transactions on Automatic Control*, 2019, 64(1): 440-442.
 ✓ H. Li, Y. Wang, Controllability analysis and control design for switched Boolean networks with state and input constraints, *SIAM Journal on Control and Optimization*, 2015, 53(5): 2955-2979.

✓ Y. Liu, H. Chen, B. Wu, Controllability of Boolean control networks with impulsive effects and forbidden states, *Mathematical Methods in the Applied Sciences*, 2014, 37(1): 1-9.

✓ Y. Liu, H. Chen, J. Lu, B. Wu, Controllability of probabilistic Boolean control networks based on transition probability matrices, *Automatica*, 2015, 52: 340-345.

✓ J. Lu, J. Zhong, D. W. C. Ho, Y. Tang, J. Cao, On controllability of delayed Boolean control networks, *SIAM Journal on Control and Optimization*, 2016, 54(2): 475-494.

Recent Works on Observability

 E. Fornasini, M. Valcher, Observability, reconstructibility and state observers of Boolean control networks, *IEEE Transactions on Automatic Control*, 2013, 58(6): 1390-1401.

✓ D. Laschov, M. Margaliot, G. Even, Observability of Boolean networks: A graph-theoretic approach, *Automatica*, 2013, 49: 2351-2362.

✓ R. Li, M. Yang, T. Chu, Observability conditions of Boolean control networks, International Journal of Robust and Nonlinear Control, 2014, 24: 2711-2723.

✓ D. Cheng, H. Qi, T. Liu, Y. Wang, A note on observability of Boolean control networks, *Systems & Control Letters*, 2016, 87: 76-82.

✓ Y. Guo, W. Gui, C. Yang, Redefined observability matrix for Boolean networks and distinguishable partitions of state space, *Automatica*, 2018, 91: 316-319.

✓ Y. Yu, M. Meng, J. Feng, Observability of Boolean networks via matrix equations, *Automatica*, 2020, 111: 108621.

✓ K. Zhang, L. Zhang, Observability of Boolean control networks: A unified approach based on finite automata, *IEEE Transactions on Automatic Control*, 2016, 61(9): 2733-2738.

✓ D. Cheng, C. Li, F. He, Observability of Boolean networks via set controllability approach, *Systems & Control Letters*, 2018, 115: 22-25.

✓ Y. Guo, Observability of Boolean control networks using parallel extension and set reachability, *IEEE Transactions on Neural Networks and Learning Systems*, 2018, 29(12): 6402-6408.

Set Controllability of BNs

- Set controllability depicts the reachability from the family of initial sets to the family of destination sets^{*}.
 - Applications of set controllability: <u>bbservability</u>, set stabilization, partial stabilization, output tracking, synchronization, consensus, etc.
 - The key of applying set controllability is to properly construct the family of initial sets and the family of destination sets.

D. Cheng, C. Li, F. He, Observability of Boolean networks via set controllability approach, Systems & Control Letters, 2018, 115: 22-25.

J. Wahg, Y. Liu, H. Li, Finite-time controllability and set controllability of impulsiveprobabilistic Boolean control networks, IEEE Access, 2020, 8: 111995-112002.

Set Controllability of BNs

- Set controllability depicts the reachability from the family of initial sets to the family of destination sets^{*}.
- Applications of set controllability: observability, set stabilization, partial stabilization, output tracking, synchronization, consensus, etc^{*}.

The key of applying set controllability is to properly construct the family of initial sets and the family of destination sets.

D. Cheng, C. Li, F. He, Observability of Boolean networks via set controllability approach, Systems & Control Letters, 2018, 115: 22-25.

^{*}J. Wang, Y. Liu, H. Li, Finite-time controllability and set controllability of impulsive probabilistic Boolean control networks, IEEE Access, 2020, 8: 111995-112002.

Set Controllability of BNs

- Set controllability depicts the reachability from the family of initial sets to the family of destination sets^{*}.
- Applications of set controllability: observability, set stabilization, partial stabilization, output tracking, synchronization, consensus, etc^{*}.
- The key of applying set controllability is to properly construct the family of initial sets and the family of destination sets.

D. Cheng, C. Li, F. He, Observability of Boolean networks via set controllability approach, Systems & Control Letters, 2018, 115: 22-25.

^{*}J. Wang, Y. Liu, H. Li, Finite-time controllability and set controllability of impulsive probabilistic Boolean control networks, IEEE Access, 2020, 8: 111995-112002.

Recent Works on Output Tracking

 E. Fornasini, M. Valcher, Feedback stabilization, regulation and optimal control of Boolean control networks, *Proc. 2014 American Control Conf.*, 2014, pp. 1981-1986.

✓ H. Li, Y. Wang, L. Xie, Output tracking control of Boolean control networks via state feedback: Constant reference signal case, *Automatica*, 2015, 59: 54-59.

✓ H. Li, L. Xie, Y. Wang, Output regulation of Boolean control networks, *IEEE Transactions on Automatic Control*, 2017, 62(6): 2993-2998.

✓ J. Zhong, D. W. C. Ho, J. Lu, Q. Jiao, Pinning controllers for activation output tracking of Boolean network under one-bit perturbation, *IEEE Transactions on Cybernetics*, 2018, 49(9): 3398-3408.

✓ X. Zhang, Y. Wang, D. Cheng, Output tracking of Boolean control networks, *IEEE Transactions on Automatic Control*, 2020, 65(6): 2730-2735.

✓ Z. Zhang, T. Leifeld, P. Zhang, Finite horizon tracking control of Boolean control networks, *IEEE Transactions on Automatic Control*, 2018, 63(6): 1798-1805.

Notations

- **1.** $\mathcal{D} := \{1, 0\}.$
- **2.** $\Delta_n := \{\delta_n^k : k = 1, \dots, n\}$, where δ_n^k denotes the *k*-th column of I_n . $\Delta := \Delta_2$.
- **3.** An $n \times t$ logical matrix $M = [\delta_n^{i_1} \delta_n^{i_2} \cdots \delta_n^{i_l}]$ is briefly denoted by $M = \delta_n[i_1 \ i_2 \ \cdots \ i_l]$. The set of $n \times t$ logical matrices is denoted by $\mathcal{L}_{n \times t}$.
- **4.** Given $A \in \mathbb{R}^{m \times n}$, $Col_i(A)$, $Row_i(A)$ and $(A)_{i,j}$ denote the *i*-th column, the *i*-th row and the (i,j)-th element of A, respectively. $Col_i(A) = A\delta_n^i$, $Row_i(A) = (\delta_m^i)^\top A$.
- **5.** Given $A \in \mathbb{R}^{n \times mp}$, denote the *i*-th $n \times p$ block of A by $Blk_i(A)$.
- ¬, ∨ and ∧ denote "Negation", "Disjunction" and "Conjunction", respectively.

Set Controllability of Boolean Networks

Observability of Boolean Networks

Output Tracking of Boolean Networks

Concluding Remarks

Boolean Control Networks

Consider the following Boolean control network (BCN):

$$\begin{cases} X(t+1) = f(U(t), X(t)), \\ Y(t) = h(X(t)). \end{cases}$$
(7)

✓ $X(t) = (x_1(t), \dots, x_n(t)) \in \mathcal{D}^n, U(t) = (u_1(t), \dots, u_m(t)) \in \mathcal{D}^m$, and $Y(t) = (y_1(t), \dots, y_p(t)) \in \mathcal{D}^p$ denote the states, control inputs, and outputs of system (7) at time *t*, respectively.

$$f: \mathcal{D}^{m+n} \to \mathcal{D}^n$$
 and $h: \mathcal{D}^n \to \mathcal{D}^p$ are logical mappings.

Definition of Controllability

Definition 1 (D. Cheng et al., Springer, 2011)

Consider BCN (7) and given $X_0, X_d \in \mathcal{D}^n$.

1. X_d is said to be reachable from X_0 at the *T*-th step, $T \in \mathbb{Z}_+$, if one can find a control sequence $\{U(t) \in \mathcal{D}^m : t = 0, \dots, T-1\}$ such that $X(T; X_0, U) = X_d$; 2. X_d is said to be reachable from X_0 , if there exists $T \in \mathbb{Z}_+$ such that X_d is reachable from X_0 at the *T*-th step; 3. BCN (7) is said to be controllable at X_0 , if for any given $X_d \in \mathcal{D}^n, X_d$ is reachable from X_0 ; 4. BCN (7) is said to be controllable, if it is controllable at any $X_0 \in \mathcal{D}^n$.

Algebraic Form of BCNs

Using the vector form of Boolean variables, that is, $2 - i \sim \delta_2^i$, i = 1, 2, BCN (7) can be converted into the following algebraic form:

$$\begin{cases} x(t+1) = Lu(t)x(t), \\ y(t) = Hx(t), \end{cases}$$
(8)

where $x(t) = \ltimes_{i=1}^{n} x_i(t)$, $u(t) = \ltimes_{i=1}^{m} u_i(t)$, $y(t) = \ltimes_{i=1}^{p} y_i(t)$, $L \in \mathcal{L}_{2^n \times 2^{n+m}}$ is the state transition matrix, and $H \in \mathcal{L}_{2^p \times 2^n}$ is the output matrix.

Controllability Matrix

Controllability matrix:

$$\mathcal{C} := \sum_{t=1}^{2^n} M^t$$

where $M := \sum_{i=1}^{2^m} L\delta_{2^m}^i$ is the one-step state transition matrix.

Remark 1

When defining the controllability matrix, the matrix addition and matrix product can be replaced by Boolean addition $(+_{\mathcal{B}})$ and Boolean product $(\times_{\mathcal{B}})$, respectively^{*a*}.

^aD. Cheng, C. Li, F. He, Observability of Boolean networks via set controllability approach, *Syst. Control Lett.*, 2018, 115: 22-25.

Controllability Criterion

Theorem 1 (Y. Zhao et al., Syst. Control Lett., 2010) Consider BCN (8).

(i). $x_d = \delta_{2^n}^{\varphi}$ is reachable from $x_0 = \delta_{2^n}^{\theta}$ at the *T*-th step, $T \in \mathbb{Z}_+$, if and only if $(M^T)_{\varphi,\theta} > 0$.

(ii). $x_d = \delta_{2^n}^{\varphi}$ is reachable from $x_0 = \delta_{2^n}^{\theta}$, if and only if $(\mathcal{C})_{\varphi,\theta} > 0$.

(iii). System (8) is controllable at $x_0 = \delta_{2^n}^{\theta}$, if and only if $Col_{\theta}(\mathcal{C}) > 0$.

(iv). System (8) is controllable, if and only if C > 0.

Proof of (i). in Theorem 1

- ✓ When T = 1, by Definition 1, $x_d = \delta_{2^n}^{\varphi}$ is reachable from $x_0 = \delta_{2^n}^{\theta}$ at the first step, if and only if there exists $u(0) := \delta_{2^m}^{\mu}$ such that $\delta_{2^n}^{\varphi} = L\delta_{2^m}^{\mu}\delta_{2^n}^{\theta}$. Then, we have $(M)_{\varphi,\theta} = \sum_{i=1}^{2^m} (L\delta_{2^m}^i)_{\varphi,\theta} \ge (L\delta_{2^m}^{\mu})_{\varphi,\theta} = 1 > 0$.
- ✓ Assume that the conclusion holds for $T = s \ge 1$. When T = s + 1, since a path from x_0 to x_d at the (s + 1)-th step can always be considered as a path from x_0 to $\bar{x}_0 = \delta_{2^n}^{\gamma}$ at the *s*-th step and then from \bar{x}_0 to x_d at the first step, we have $(M^s)_{\gamma,\theta} > 0$ and $(M)_{\varphi,\gamma} > 0$. Therefore, $(M^{s+1})_{\varphi,\theta} = \sum_{k=1}^{2^n} (M)_{\varphi,k} (M^s)_{k,\theta} \ge (M)_{\varphi,\gamma} (M^s)_{\gamma,\theta} > 0$.

✓ By induction, the conclusion is true for any $T \in \mathbb{Z}_+$.

Definition of Set Controllability

◊ Given the family of initial sets P₀ and the family of destination sets P_d respectively as follows:

$$\begin{split} P_0 &:= \{s_1^0, s_2^0, \cdots, s_{\alpha}^0\} \subseteq 2^{\Delta_{2^n}}, \ s_j^0 \neq \emptyset, j = 1, 2, \cdots, \alpha; \\ P_d &:= \{s_1^d, s_2^d, \cdots, s_{\beta}^d\} \subseteq 2^{\Delta_{2^n}}, \ s_i^d \neq \emptyset, i = 1, 2, \cdots, \beta. \end{split}$$

Definition 2 (D. Cheng et al., Syst. Control Lett., 2018)

BCN (8) with P_0 and P_d is

1. set controllable from $s_j^0 \in P_0$ to $s_i^d \in P_d$, if there exist $x_0 \in s_j^0$ and $x_d \in s_i^d$, such that x_d is reachable from x_0 ; 2. set controllable at s_j^0 , if for any $s_i^d \in P_d$, it is set controllable from s_j^0 to s_i^d ;

3. set controllable, if it is set controllable at any $s_j^0 \in P_0$.

Set Controllability Matrix

Set controllability matrix:

$$\mathcal{C}_S := J_d^\top \mathcal{C} J_0$$

✓ J_0 (J_d) is the initial (destination) index matrix defined as

$$J_0 := [V(s_1^0) \ V(s_2^0) \ \cdots \ V(s_{\alpha}^0)],$$

$$J_d := [V(s_1^d) \ V(s_2^d) \ \cdots \ V(s_{\beta}^d)].$$

✓ $V(s) \in \mathbb{R}_{2^n}$ with $(V(s))_i := \begin{cases} 1, & \delta_{2^n}^i \in s, \\ 0, & \delta_{2^n}^i \notin s \end{cases}$ is the index vector of $s \subseteq \Delta_{2^n}$.

Set Controllability Criterion

Theorem 2 (D. Cheng et al., Syst. Control Lett., 2018)

BCN (8) with P_0 and P_d is

- (i). set controllable from s_i^0 to s_i^d , if and only if $(C_s)_{i,j} > 0$.
- (ii). set controllable at s_i^0 , if and only if $Col_j(C_S) > 0$.
- (iii). set controllable, if and only if $C_S > 0$.

Remark 2

Controllability is a spacial kind of set controllability. If

$$P_0 = P_d = \left\{ \{\delta_{2^n}^1\}, \cdots, \{\delta_{2^n}^{2^n}\} \right\},\$$

the set controllability degrades to the controllability defined in Definition 1.

An Example

Given $P_0 = \left\{ \{\delta_8^2, \delta_8^3\}, \{\delta_8^1, \delta_8^5, \delta_8^7\} \right\}$ and $P_d = \left\{ \{\delta_8^4\}, \{\delta_8^2, \delta_8^8\} \right\}$. Consider the set controllability of BCN (8) with $L = \delta_8 [3\ 5\ 1\ 3\ 1\ 5\ 6\ 3\ 7\ 4\ 1\ 3\ 1\ 5\ 6\ 3]$

◇ Controllability matrix:

	г 230	170	110	220	110	220	120	220 -	1	
	0	0	0	0	0	0	0	0		
$a = \sum_{i=1}^{8} \left(\sum_{j=1}^{2} r_{j} s_{i}\right) t$	55	92	110	62	110	60	120	62		
	0	1	0	0	0	0	0	0		
$\mathcal{C} := \sum_{i} (\sum_{j=1}^{i} L \delta_2^i)^t =$	60	73	120	48	120	50	100	48	•	
t=1 $i=1$	110	84	60	120	60	120	50	120		
	55	90	110	60	110	60	120	60		
	L o	0	0	0	0	0	0	0.		

Initial and destination index matrices:

♦ Set controllability matrix:

$$\mathcal{C}_S = J_d^\top \mathcal{C} J_0 = \left| \begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right| \,.$$

Thus, BCN (8) is not set controllable with respect to P_0 and P_d .

30 / 50

- Set Controllability of Boolean Networks
- Observability of Boolean Networks
 - Output Tracking of Boolean Networks
- Concluding Remarks

Definition of Observability

Definition 3 (Y. Zhao et al., Syst. Control Lett., 2010)

BCN (8) is observable, if for any two distinct states x_0, \bar{x}_0 , there exists a control sequence $\{u_0, u_1, \dots, u_{p-1}\}, p \in \mathbb{Z}_+$, such that the corresponding output sequences $(y_0, y_1, \dots, y_p) \neq (\bar{y}_0, \bar{y}_1, \dots, \bar{y}_p)$.

Remark 3

K. Zhang and L. Zhang 2016^{*a*} discussed four different definitions of observability and pointed out that Definition 3 is the most sharp one. Thus, we take Definition 3 as the standard one and concentrate on this definition. An interesting topic is to explore other definitions via set controllability approach.

^aK. Zhang, L. Zhang, Observability of Boolean control networks: A unified approach based on finite automata, *IEEE Trans. Aut. Contr.*, 2016, 61(9): 2733-2738.

Construct Dual System

> Split the product state space $\Delta_{2^n} \times \Delta_{2^n}$ into a partition of three components as

 $D = \{zx : z = x\}, \ \Theta = \{zx : z \neq x, Hz = Hx\}, \ \Xi = \{zx : z \neq x, Hz \neq Hx\}.$

◊ Using algebraic form (8), construct a dual system as

$$\begin{cases} z(t+1) = Lu(t)z(t), \\ x(t+1) = Lu(t)x(t). \end{cases}$$
 (9)

Remark 4

By classifying the pairs of states, Cheng et al. 2016^a proposed an effective criterion for observability via constructing observability matrix. However, in order to obtain the observability matrix, one needs to proceed an iterative algorithm.

^aD. Cheng, et al., A note on observability of Boolean control networks, *Syst. Control Lett.*, 2016, 87: 76-82.

Observability Criterion

 Construct the family of initial sets P₀ and the family of destination sets P_d respectively as follows:

$$P_0 := \bigcup_{zx \in \Theta} \left\{ \{zx\} \right\}; \tag{10}$$

$$P_d := \{\Xi\}. \tag{11}$$

Theorem 3 (D. Cheng et al., Syst. Control Lett., 2018)

BCN (8) is observable, if and only if system (9) is set controllable with respect to P_0 and P_d , which are defined in (10) and (11), respectively.

An Example

Example 1

Consider the reduced model for the lac operon in the bacterium Escherichia coli^a:

$$\begin{cases} x_1(t+1) = \neg u_1(t) \land (x_2(t) \lor x_3(t)), \\ x_2(t+1) = \neg u_1(t) \land u_2(t) \land x_1(t), \\ x_3(t+1) = \neg u_1(t) \land (u_2(t) \lor (u_3(t) \land x_1(t))), \end{cases}$$
(12)

where x_1 , x_2 and x_3 represent lac mRNA, lactose in high and medium concentrations, respectively; u_1 , u_2 and u_3 are extracellular glucose, high and medium extracellular lactose, respectively.

^aA. Veliz-Cuba, B. Stigler, Boolean models can explain bistability in the lac operon, *J. Comput. Biol.*, 2011, 18(6): 783-794.

An Example

Assume that the outputs are

$$\begin{cases} y_1(t) = x_1(t) \land \neg x_2(t) \land x_3(t), \\ y_2(t) = (x_1(t) \land \neg x_3(t)) \lor \{\neg x_1(t) \\ \lor [x_2(t) \lor (\neg x_2(t) \land \neg x_3(t))]\}, \\ y_3(t) = (x_1(t) \land \neg x_2(t) \land x_3(t)) \lor (\neg x_1(t) \land x_3(t)). \end{cases}$$
(13)

◇ The algebraic form of BCN (12) with outputs (13) is

$$\begin{cases} x(t+1) = Lu(t)x(t), \\ y(t) = Hx(t) \end{cases}$$

where

and

$$H = \delta_8[8\ 6\ 3\ 6\ 5\ 6\ 7\ 6].$$

An Example It is easy to figure out that $\Theta = \{\delta_{64}^{12}, \delta_{64}^{14}, \delta_{64}^{16}, \delta_{64}^{26}, \delta_{64}^{30}, \delta_{64}^{32}, \delta_{64}^{42}, \delta_{64}^{48}, \delta_{64}^{58}, \delta_{64}^{60}, \delta_{64}^{62}\}, \\$ $\Xi = \Delta_{64} \setminus \left(\Theta \cup \{ \delta_{64}^1, \delta_{64}^{10}, \delta_{64}^{19}, \delta_{64}^{28}, \delta_{64}^{37}, \delta_{64}^{46}, \delta_{64}^{55}, \delta_{64}^{64} \} \right).$ Construct a dual system as \diamond $\begin{cases} z(t+1) = Lu(t)z(t), \\ x(t+1) = Lu(t)x(t). \end{cases}$ (14) Setting w(t) = z(t)x(t), we have $w(t+1) = \bar{L}u(t)w(t),$ where $L = \delta_{64} [64 \ 64 \ 64 \ \cdots \ 60 \ 60 \ 60 \ 64]$. The controllability matrix of system (14) can be calculated by $\bar{\mathcal{C}} := \sum_{i=1}^{64} (\sum_{i=1}^{8} \bar{L} \delta_8^i)^j.$

37 / 50

An Example

 Construct the family of initial sets P₀ and the family of destination sets P_d respectively as follows:

$$P_0 := \bigcup_{zx \in \Theta} \left\{ \{zx\} \right\}, \ P_d := \{\Xi\}.$$

 \diamond According to P_0 and P_d , we have

 $J_0 = \delta_{64} [12 \ 14 \ 16 \ 26 \ 30 \ 32 \ 42 \ 44 \ 48 \ 58 \ 60 \ 62], \ J_d = \sum \ \delta^i_{64}.$

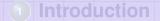
Since

$$\mathcal{C}_S = J_d^\top \bar{\mathcal{C}} J_0 > 0,$$

system (14) is set controllable with respect to P_0 and P_d .

♦ By virtue of Theorem 3, BCN (12) with outputs (13) is observable.

 $\delta_{64}^i \in \Xi$



- 2) Set Controllability of Boolean Networks
- Observability of Boolean Networks
- Output Tracking of Boolean Networks
- Concluding Remarks

Definition of Output Tracking

Definition 4 (H. Li et al., Automatica, 2015)

Given a constant reference signal $y^* \in \Delta_{2^p}$. BCN (8) is trackable with respect to y^* , if for any initial state $x_0 \in \Delta_{2^n}$, there exist $T \in \mathbb{Z}_+$ and a control sequence $\{u(t) : t \in \mathbb{N}\}$, such that $y(t; x_0, u) = y^*$ holds for any integer $t \ge T$.

♦ For the given reference signal $y^* = \delta^{\alpha}_{2^p}$, define

$$\mathcal{O}(\alpha) := \{ \delta_{2^n}^i \in \Delta_{2^n} : Col_i(H) = y^* \},$$
 (15)

and presuppose $\mathcal{O}(\alpha) \neq \emptyset$.

Output Tracking Criterion-Reachable Set Approach \diamond For $S \subseteq \Delta_{2^n}$, $S \neq \emptyset$ and $k \in \mathbb{Z}_+$, define

 $\mathcal{R}_k(S) = \Big\{ x_0 \in \Delta_{2^n} : \text{there exists } \{ u(t) \in \Delta_{2^m} : t = 0, \cdots, k-1 \}$

such that $x(k; x_0, u) \in S$.

Theorem 4 (H. Li et al., Automatica, 2015)

The output of BCN (8) tracks the reference signal $y^* = \delta_{2^p}^{\alpha}$ by a state feedback control, if and only if there exist a nonempty set $S \subseteq \mathcal{O}(\alpha)$ and an integer $1 \le \tau \le 2^n$, such that

$$\begin{cases} S \subseteq \mathcal{R}_1(S), \\ \mathcal{R}_\tau(S) = \Delta_{2^n}. \end{cases}$$
(16)

Output Tracking Criterion-Reachable Set Approach

- ♦ Consider BCN (8) with $L = \delta_{2^n}[i_1 \ i_2 \ \cdots \ i_{2^{m+n}}]$. Suppose that there exist a nonempty set $S \subseteq \mathcal{O}(\alpha)$ and an integer $1 \le \tau \le 2^n$ such that (16) holds.
- ◇ For each integer 1 ≤ j ≤ 2ⁿ, there exists a unique integer 1 ≤ k_j ≤ τ such that δ^j_{2ⁿ} ∈ R^o_{k_j}(S), where R^o_k(S) = R_k(S) \ R_{k-1}(S), R₀(S) := ∅.
- ♦ Let $1 \le p_j \le 2^m$ be such that $1 \le l \le 2^{m+n}$ and

 $\left\{\begin{array}{ll} \delta_{2^n}^{l_i} \in S, & k_j = 1, \\ \delta_{2^n}^{l_i} \in \mathcal{R}_{k_j-1}(S), & 2 \le k_j \le \tau, \end{array}\right.$

where $l = (p_j - 1)2^n + j$.

Corollary 1 (H. Li et al., Automatica, 2015)

The state feedback based output tracking control can be designed as u(t) = Kx(t) with $K = \delta_{2^m} [p_1 \ p_2 \cdots \ p_{2^n}]$.

Output Tracking Criterion-Set Controllability Approach

Definition 5

Consider BCN (8) and given a nonempty set $S \subseteq \Delta_{2^n}$. 1. *S* is said to be a control invariant subset of BCN (8), if for any $x_0 \in S$, there exists a control $u_{x_0} \in \Delta_{2^m}$, such that $x(1; x_0, u_{x_0}) \in S$. 2. *S* is said to be globally reachable, if for any $x_0 \in \Delta_{2^n}$, there exist $T \in \mathbb{Z}_+$ and a control sequence $\{u(t) : t = 0, 1, \dots, T-1\}$, such that $x(T; x_0, u) \in S$.

Output Tracking Criterion-Set Controllability Approach

- $\diamond \text{ Construct } P_0 = \left\{ \{\delta_{2^n}^1\}, \cdots, \{\delta_{2^n}^{2^n}\} \right\}.$
- ◇ For $S \subseteq \Delta_{2^n}$ and $S \neq \emptyset$, construct

 $\bar{P}_0 = \{s_i^0 : i = 1, \cdots, |S|\}, \ s_i^0 = \{x^i \in S\}, \ P_d = \{S\}.$

Theorem 5

The output of BCN (8) tracks the reference signal $y^* = \delta^{\alpha}_{2^p}$, if and only if there exists a nonempty set $S \subseteq \mathcal{O}(\alpha)$ satisfying the following two conditions:

- (i). *S* is a control invariant subset of BCN (8) \Leftrightarrow BCN (8) is one-step set controllable with respect to \bar{P}_0 and $P_d \Leftrightarrow J_d^{\top} M \bar{J}_0 > 0$, where J_d and \bar{J}_0 are the index matrices of P_d and \bar{P}_0 , respectively;
- (ii). *S* is globally reachable \Leftrightarrow BCN (8) is set controllable with respect to P_0 and $P_d \Leftrightarrow J_d^{\top} C J_0 > 0$, where J_0 is the index matrix of P_0 .

An Example

Example 2

Recall Example 1. Assume that the outputs are

$$\begin{cases} y_1(t) = x_1(t), \\ y_2(t) = x_2(t). \end{cases}$$

Our objective is to verify whether or not BCN (12) is trackable with respect to $Y^* = (1, 0)$ via set controllability approach.

◊ Using the vector form of Boolean variables, we have

$$H = \delta_4 [1 \ 1 \ 2 \ 2 \ 3 \ 3 \ 4 \ 4], \ y^* = \delta_4^2.$$

According to (15), one can calculate that

 $\mathcal{O}(2) = \{\delta_8^3, \delta_8^4\}.$

An Example

Construct

$$P_0 = \left\{ \{\delta_8^1\}, \cdots, \{\delta_8^8\} \right\}, \ \bar{P}_0 = P_d = \{\{\delta_8^3\}\}.$$

Correspondingly, we have $J_0 = \Delta_8$, $\bar{J}_0 = J_d = \delta_8^3$.

◊ On one hand, since

$$J_d^\top M \bar{J}_0 = 1 > 0$$

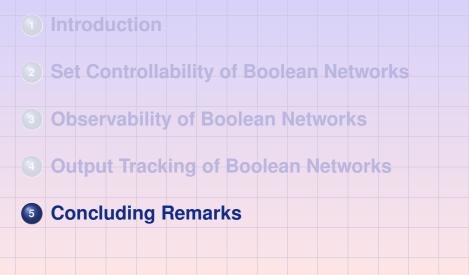
BCN (12) is one-step set controllable with respect to \bar{P}_0 and P_d .

On the other hand, since

$$J_d^{\top} \mathcal{C} J_0 > 0,$$

BCN (12) is set controllable with respect to P_0 and P_d .

♦ By virtue of Theorem 5, $S = {\delta_8^3} \subseteq O(2)$ is a control invariant subset of BCN (12). In addition, *S* is globally reachable. Therefore, the output of BCN (12) tracks the reference signal $y^* = \delta_4^2$, which coincides with the conclusion obtained in Li et al. 2015.



Concluding Remarks

 Set controllability is a powerful tool to deal with observability and output tracking of BNs.

Further study: (i) Generalization of set controllability; (ii) Applications to networked evolutionary games^{*}, discrete event systems^{*} and finite-field networks^{*}; (iii) Computational complexity reduction; (iv) Sampled-data control, event-triggered control, pinning control^{*}.

Y. Wu, D. Cheng, B. K. Ghosh, T. Shen, Recent advances in optimization and game theoretic control for networked systems, Asian Journal of Control, 2019, 21(6): 2493-2512.

X. Xu Y. Hong, Matrix approach to model matching of asynchronous sequentia machines, IEEE Trans. Aut. Contr., 2013, 58(11): 2974-2979.

Y. Li, H. Li, X. Ding. Set stability of switched delayed logical networks with application to finite-field consersus, Automatica, 2020, 113: 108768.

X. Kong, S. Wang, H. Li, let al., New development for control design techniques of logical control networks. Frontiers of Information Technology & Electronic Engineering, 2020, 21(2): 220-233.

Concluding Remarks

- Set controllability is a powerful tool to deal with observability and output tracking of BNs.
- Further study: (i) Generalization of set controllability; (ii) Applications to networked evolutionary games^{*}, discrete event systems^{*} and finite-field networks^{*}; (iii) Computational complexity reduction; (iv) Sampled-data control, event-triggered control, pinning control^{*}.

^{*}Y. Wu, D. Cheng, B. K. Ghosh, T. Shen, Recent advances in optimization and game theoretic control for networked systems, Asian Journal of Control, 2019, 21(6): 2493-2512.

X. Xu, Y. Hong, Matrix approach to model matching of asynchronous sequential machines, IEEE Trans. Aut. Contr., 2013, 58(11): 2974-2979.

^{*}Y. Li, H. Li, X. Ding, Set stability of switched delayed logical networks with application to finite-field consensus, Automatica, 2020, 113: 108768.

X. Kong, S. Wang, H. Li, et al., New development for control design techniques of logical control networks, Frontiers of Information Technology & Electronic Engineering, 2020, 21(2): 220-233.

Concluding Remarks

Function Perturbation Theory of Boolean Networks

 ✓ M. Meng, J. Feng, Function perturbations in Boolean networks with its application in a D. melanogaster gene network, *European Journal of Control*, 2014, 20: 87-94.

✓ Y. Liu, B. Li, H. Chen, J. Cao, Function perturbations on singular Boolean networks, *Automatica*, 2017, 84: 36-42.

✓ J. Zhong, D. W. C. Ho, J. Lu, Q. Jiao, Pinning controllers for activation output tracking of Boolean network under one-bit perturbation, *IEEE Transactions on Cybernetics*, 2019, 49(9): 3398-3408.

✓ H. Li, S. Wang, X. Li, G. Zhao, Perturbation analysis for controllability of logical control networks, SIAM Journal on Control and Optimization, minor revision.

✓ S. Wang, H. Li, Graph-based function perturbation analysis for observability of multi-valued logical networks, *IEEE Transactions on Neural Networks and Learning Systems*, minor revision.

✓ H. Li, X. Yang, S. Wang, Robustness for stability and stabilization of Boolean networks with stochastic function perturbations, *IEEE Transactions on Automatic Control*, DOI: 10.1109/TAC.2020.2997282.

✓ H. Li, X. Yang, S. Wang, Perturbation analysis for finite-time stability and stabilization of probabilistic Boolean networks, *IEEE Transactions on Cybernetics*, DOI: 10.1109/TCYB.2020.3003055.

✓ X. Li, H. Li, G. Zhao, Function perturbation impact on feedback stabilization of Boolean control networks, *IEEE Transactions on Neural Networks and Learning Systems*, 2019, 30(8): 2548-2554.

49 / 50

