An Introduction to Dimension-Free Manifolds With Applications to Control Systems

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

Zhengping Ji

Academy of Mathematics and Systems Science, Chinese Academy of Sciences

August 16, 2023 Liaocheng, China

Background: Dimension-Varying Systems

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

(a) Spacecraft docking (b) Vehicle clutch system

(c) Internet (d) Genetic regulatory networks

Figure 1: Dimension-varying Systems $2/51$

Outline of the course

- Basic notions and examples in differential topology
- Construction of dimension-free manifolds

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

Application: dimension-varying control systems

Equivalence and Partitions

Definition 1.1

A binary relation *∼* over a set *X* is called an equivalence relation, if *∀x, y, z ∈ X*,

- \bullet (reflexive) $x \sim x$;
- ² (symmetric) *x ∼ y ⇒ y ∼ x*;
- \bullet (transitive) $x \sim y$, $y \sim z \Rightarrow x \sim z$.

Preliminaries Dimension-free manifolds Application: dimension-free manifolds Application: dimension-free manifolds and application: dimension-free manifolds and application: dimension-free manifolds and application: \bullet

Quotient Sets

Definition 1.2

Consider a set *X* and an equivalence *∼* on it. *∀a ∈ X*, call a subset $[a] := \{x \in X | x \sim a\}$ ⊂ *X* an equivalence class with a representative element *a*. The set of all equivalence classes in *X* is called the quotient set of *X* with respect to equivalence *∼*, denoted by *X*/ \sim . The surjective map π : *X* → *X*/ \sim , $a \mapsto [a]$ is called the canonical map or quotient map.

Preliminaries Dimension-free manifolds Application: dimension-free manifolds Application: dimension-free manifolds

Examples

Some examples of quotient sets from equivalences:

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

1 Let *p* be an integer. $\forall x, y \in \mathbb{Z}$, define *x* ∼ *y* \Leftrightarrow *x* = *y* (mod *p*), then it gives an equivalence on \mathbb{Z} , and the equivalence classes are the integers modulo *p*.

² Let *p ∈* R *n* , define

 $\mathcal{U}_p := \{ \, U \in \mathbb{R}^n | \, U \, \text{is an open set containing } p \}.$

∀U ∈ Up, denote by *C∞*(*U*) all smooth functions over *U*, let $\mathcal{F} := \bigcup_{U \in \mathcal{U}_p} C^\infty(U)$, and define an equivalence on \mathcal{F} by \sim : *∀f,* $g \in \mathcal{F}$, for any $f \in C^\infty(U)$, $g \in C^\infty(V)$,

f ∼ *g* \Leftrightarrow $\exists W \in \mathcal{U}_p$ s.t. $W \subset U \cap V$, $f|_W = g|_W$.

denote the quotient space by $\mathit{C}^\infty_p:=\mathcal{F}/\sim$, which is called the germ of smooth functions at *p*.

A Special Class of Quotient Sets

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

Definition 1.3

Consider a set *X* and its subset *S*, define the following equivalence *∼*: *∀x, y ∈ X*, *x ∼ y ⇔ {x, y} ⊂ S*. Denote the quotient set of *X* with respect to this equivalence as *X/S*, called the quotient set of *X* with respect to *S*.

Example: consider a finite automaton with observation, denoted by $\mathcal{A} = (X, Y, \Sigma, f, h, x_0, X_m)$. Define an equivalence over *X* as *x*₁ \sim *x*₂ \Leftrightarrow *h*(*x*₁) = *h*(*x*₂), then the quotient space follows. Obviously, this is the quotient space with respect to $h^{-1}(y)$, $y \in Y$.

Topological Spaces

Definition 1.4

A topology *T* on a set *X* is a collection of subsets of *X* satisfying the following axioms:

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

- (i) $\varnothing \in \mathcal{T}$, $X \in \mathcal{T}$.
- (ii) $\forall O_1, O_2 \in \mathcal{T}$, $O_1 \cap O_2 \in \mathcal{T}$.
- (iii) $\forall \{O_i\}_{i=1,2,\cdots} \subset \mathcal{T}$, $\bigcup_i O_i \in \mathcal{T}$.

The sets in T are called open sets; the complement of an open set is called a closed set.

Consider two topologies \mathcal{T}_1 , \mathcal{T}_2 on X . If $\mathcal{T}_1 \subset \mathcal{T}_2$, then we say \mathcal{T}_2 is finer (or bigger) than \mathcal{T}_1 , and \mathcal{T}_1 is coarser (or smaller) than \mathcal{T}_2 .

Euclidean Topology

Definition 1.5

Denote by *d* the Euclidean norm on \mathbb{R}^n , $p \in \mathbb{R}^n$, $r > 0$, define $B_r(p) := \{q \in \mathbb{R}^n | d(p,q) < r\}$, and define the open sets as arbitrary unions of $B_r(p)$, $\forall p \in \mathbb{R}^n$, $\forall r > 0$, the topology derived is called the Euclidean topology on \mathbb{R}^n .

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

Remark 1.1

A subset family $\mathcal{B} \subset \mathcal{T}$ is called the topological base of (X, \mathcal{T}) , if every open set can be represented as the union of some sets in *B*.

Continuous Maps and Homeomorphisms

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

Definition 1.6

Consider a map $f : (X_1, \mathcal{T}_1) \to (X_2, \mathcal{T}_2)$ between topological spaces. If *∀O ∈ T*2, *f −*1 (*O*) *∈ T*1, Then *f* is called a continuous map. If *f* is a bijection and its inverse is also continuous, it is called a homeomorphism between X_1 and X_2 , and X_1 , X_2 are called homeomorphic.

An open set containing *x* is called a neighbourhood of *x*. The above definition is equivalent to the following classical definition of continuity in function theory:

Definition 1.7

If $∀x ∈ X₁$, for any neighbourhood *V* of $f(x)$ in $X₂$, there exist a neighbourhood $U \subset X_1$ of *x*, such that $f(U) \subset V$, then *f* is called a continuous map.

Topology From Mappings

Proposition 1.1

Consider a map $f: X \to (Y, \mathcal{T})$, let \mathcal{T} be the topology on *Y*. define a collection of subsets over *X* consisting of the arbitrary union and finite intersection of the preimages of sets in *T* as

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

$$
\mathcal{T}_f := \left\{ f^{-1}(U_1) \cap \cdots \cap f^{-1}(U_n) \middle| \{U_i\}_{i=1}^n \subset \mathcal{T}, n \in \mathbb{N} \right\}
$$

$$
\cup \left\{ \bigcup_{\lambda \in \Lambda} f^{-1}(U_\lambda) \middle| \{U_\lambda\}_{\lambda \in \Lambda} \subset \mathcal{T} \right\}
$$

then \mathcal{T}_f is the coarsest topology on X making the map f continuous, that is: for any topology \mathcal{T}_X on X , if $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T})$ is continuous, then $\mathcal{T}_f \subset \mathcal{T}_X$. Dually, for a map $g : (Y, \mathcal{T}) \to Z$, define the subset collection of Z as the arbitrary union and finite intersection of the images of sets in \mathcal{T} , denoted by \mathcal{T}_g , then \mathcal{T}_g is the finest topology on Z making g continuous. 11 / 51

Quotient Topological Spaces

Preliminaries **Dimension-free manifolds** Application: dimension-free manifolds Application: dimension-free manifolds and application: dimension-free manifolds and application: dimension-free manifolds and application: dime

Definition 1.8

Consider a topological space (X, \mathcal{T}) and a quotient space X/\sim of X. The finest topology on X/\sim making the quotient map continuous is called the quotient topology on *X*/ \sim , denoted by $\overline{\mathcal{T}}$. $(X/\sim,\overline{\mathcal{T}})$ is called the quotient topological space of *X* with respect to *∼*.

Proposition 1.2

If *X*, *Y* are topological spaces and *X/ ∼* is the quotient space of *X*, let *f* : X $/$ \sim \rightarrow *Y* be any function, then *f* is continuous if and only if *f* \circ *π* is continuous.

Examples of Quotient Spaces

Preliminaries **Preliminaries** Dimension-free manifolds Application: dimension-tree manifolds and the experiment of the control systems of the control systems of the control systems of the control systems of the control sys

- ¹ The two-dimensional torus is the set T 2 := R ²*/ ∼*, where *∼* is defined as: $x \sim y \Leftrightarrow x - y \in \mathbb{Z} \times \mathbb{Z}$.
- ² The Möbius band is constructed as follows: consider a set $B: [0, 1] \times (0, 1) \subset \mathbb{R}^2$ endowed with Euclidean product, define $(0, a)$ ∼ $(1, -a)$, $\forall a \in (0, 1)$. The corresponding quotient space *B/ ∼* is called the Möbius band.
- 3 Denote by $D^n := \{ (x_1, \cdots, x_n) \in \mathbb{R}^n \mid x_1^2 + \cdots + x_n^2 \leqslant 1 \}$ the *n*-dimensional closed disk, let S^{n-1} := { $(x_1, \cdots, x_n) \in \mathbb{R}^n | x_1^2 + \cdots + x_n^2 = 1$ } be the *n −* 1-dimensional sphere, which is the boundary of *Dⁿ* , then $D^n/S^{n-1} \simeq S^n$.

Smooth Manifolds

Definition 1.9

Let (M, \mathcal{T}) be a Hausdorff space with countable topological basis. If $\exists \{ U_{\alpha} \}_{\alpha \in I} \subset \mathcal{T}$ satisfying $M = \bigcup_{\alpha \in I} U_{\alpha}$ and

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

- \bullet $\forall \alpha \in I$, there exists open set $V_\alpha \subset \mathbb{R}^n$ and homeomorphism $\varphi_{\alpha}: U_{\alpha} \to V_{\alpha}$;
- $2 \ \ \forall \alpha, \beta \in I$, if $U_\alpha \cap U_\beta \neq \varnothing$, then $\varphi_\beta \circ \varphi_\alpha^{-1} : \varphi_\alpha(U_\alpha \cap U_\beta) \to \varphi_\beta(U_\alpha \cap U_\beta)$ and its inverse are both smooth maps,

then *M* is called an *n*-dimensional smooth manifold, $\{(U_\alpha, \varphi_\alpha)\}_{\alpha \in I}$ is called a set of coordinates of *M*.

Tangent Vectors

Definition 1.10

Denote the germ of smooth functions at $p \in M$ as C^∞_p , let *v* : C_{p}^{∞} → $\mathbb R$ be a real function over C_{p}^{∞} , if $\forall [f], [g] \in C_{p}^{\infty}$, v satisfies

- **1** (Linearity) $\forall \alpha, \beta \in \mathbb{R}, v(\alpha[f] + \beta[g]) = \alpha v([f]) + \beta v([g])$;
- (Leibniz rule) $v([f][g]) = f(p)v([g]) + g(p)v([f])$,

Preliminaries **Dimension-free manifolds** Application: dimension-free manifolds Application: dimension-free manifolds and application: dimension-free manifolds and application: dimension-free manifolds and application: dime

then *v* is called a tangent vector at *p*. The set of all tangent vectors at *p* is called the tangent space of *M* at *p*, denoted by *TpM*.

Structure of Tangent Spaces

Preliminaries **Dimension-free manifolds** Application: dimension-free manifolds Application: dimension-free manifolds and application: dimension-free manifolds and application: dimension-free manifolds and application: dime

Given a coordinate $(U, \{y^i\}_{i=1}^n)$ of an n -dimensional manifold M , the tangent space *TpM* can be viewed as the real vector space spanned by *{ ∂* $\frac{\partial}{\partial y^i}\}_{i=1}^n$, where $\frac{\partial}{\partial y^i} : C^\infty_p \to \mathbb{R}$, $f \mapsto \frac{\partial f}{\partial y^i}|_p$ acts on a function by solving its partial derivative at p with respect to the *i*-th variable. Therefore, under this coordinate *v* can be represented as $v = \sum_{i=1}^n v_i \frac{\partial}{\partial v_i}$ $\frac{\partial}{\partial y^i}$ *, <i>v*(*f*) = $\sum_{i=1}^n v_i \frac{\partial f}{\partial y^i}$ $\frac{\partial f}{\partial y^i}|_p$, where $v^i \in \mathbb{R}$, $i = 1, \cdots, n$.

Tangent Maps

Definition 1.11

Let $f: M \to N$ be a smooth map between smooth manifolds. Let $p\in M,\ q=f(p)\in N,$ there is a map $f^*:C^\infty_q\to C^\infty_p, \ [g]\mapsto [g\circ f].$ Further, if $v \in T_pM$, then $v \circ f^* \in T_qM$, and f induces a map $f_*: T_pM \to T_qM$, $v \mapsto v \circ f^*$, called the tangent map of f at p .

Preliminaries Dimension-free manifolds Application: dimension-free manifolds Application: dimension-free manifolds and the occasion-occasion occasion-

Figure 2: Tangent maps

Properties of Tangent Maps

Tangent maps can be viewed as infinitesimal characterization of smooth maps. Consider a smooth curve *γ* : [0*,* 1] *→ M* on the manifold *M*, its image under *f* is a smooth curve $f \circ \gamma : [0,1] \to N$ on *N*, let $a \in [0, 1]$, $\gamma(a) = p$, $\dot{\gamma} = v \in T_pM$, then

Preliminaries Dimension-free manifolds Application: dimension-free manifolds Application: dimension-control systems

$$
f_*(v) = \frac{\mathrm{d}}{\mathrm{d}t} f(\gamma(t))|_{t=a}.
$$

Proposition 1.3

Let *M*, *N*, *O* be smooth manifolds, $f, g: M \rightarrow N$, $h: N \rightarrow O$ be smooth maps, id*^M* be the identity map.

- \bullet (id_{*M*)^{*∗*}|*p* = id_{*T_pM*;}}
- \bullet $(h \circ g)_* = h_* \circ g_*;$
- $\alpha f(\alpha f + \beta g)_* = \alpha f_* + \beta g_*, \ \forall \alpha, \beta \in \mathbb{R}.$

Smooth Vector Fields

Definition 1.12

Let *M* be a manifold, assigning a tangent vector at each point *p* ∈ *M* yields a vector field over *M*, denoted by *X*; $X|_p$ ∈ T_pM represents the value *X* takes at *p*. If $\forall f \in C^{\infty}(M)$, $X(f) \in C^{\infty}(M)$, then call *X* a smooth vector field over *M*. The set of all smooth vector fields over M is denoted by $\mathfrak{X}(M)$.

Preliminaries **Dimension-free manifolds** Application: dimension-free manifolds Application: dimension-varying control systems and control systems are control systems and control systems and control systems are control syst

Proposition 1.4

Let M be an n -dimensional manifold, then $X \in \mathfrak{X}(M)$ if and only if for any coordinate $(\emph{U}, \{\emph{y}^i\}_{i=1}^n)$, $\emph{X}|_{\emph{U}} = \sum_{i=1}^n f^i \frac{\partial}{\partial \emph{i}}$ $\frac{\partial}{\partial y^i}$, where f^i is a smooth function over $U, i = 1, \cdots, n$.

Integral Curves and Affine Control Systems

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

Definition 1.13

 L et M be a manifold, $U \subset M$ is an open set, $X \in \mathfrak{X}(U)$, $\gamma:[a,b]\rightarrow U$ is a smooth map. If $\dot{\gamma}(t):=\gamma_*(\frac{\mathrm{d}}{\mathrm{d}t})$ $\frac{\mathrm{d}}{\mathrm{d}t}) = X|_{\gamma(t)},$ then γ is called an integral curve of *X*.

Definition 1.14

Consider $f, g_1, \dots, g_m \in \mathfrak{X}(M)$, the integral curve corresponding to

$$
\dot{\gamma}_u(t) = f|_{\gamma_u(t)} + \sum_{i=1}^m u^i g_i|_{\gamma_u(t)}
$$

is called an affine control system on *M*, where the bounded functions $u^i: [0,\,T] \to \mathbb{R}$ are called controls.

Pan-Dimensional State Space

Preliminaries **Dimension-free manifolds** Application: dimension-free manifolds Application: dimension-free manifolds

We view all $\it n$ -dimensional real Euclidean spaces as \mathbb{R}^n . Define the topological sum

$$
\mathbb{R}^\infty:=\bigsqcup_{n\in\mathbb{N}^+}\mathbb{R}^n
$$

where each \mathbb{R}^n possesses the $\it n$ -dimensional Euclidean topology. Denote this natural topology on \mathbb{R}^{∞} as \mathcal{T}_n .

Our aim is to make R*[∞]* **a (topological) vector space.**

Vector Addition

Definition 2.1

 $\forall x \in \mathbb{R}^m \subset \mathbb{R}^\infty$, $y \in \mathbb{R}^n \subset \mathbb{R}^\infty$. Denote $\mathbf{1}_k := [1, \cdots, 1]$ $\left| \sum_{k} \right|$ \vert ^T. The vector addition (V-addition):

Preliminaries **Dimension-free manifolds** Application: dimension-free manifolds Application: dimension-free manifolds and application: dimension-free manifolds and application: dimension-free manifolds and application: dime

 $x \vec{+} y := (x \otimes \mathbf{1}_{t/m}) + (y \otimes \mathbf{1}_{t/n}) \in \mathbb{R}$ *∞,* (1)

where $t = \text{lcm}(m, n)$ is the least common multiple of m and n . Correspondingly, the substraction is defined as $x\vec{-}y := x\vec{+}(-y)$.

Inner Product

Definition 2.2

 $\forall x \in \mathbb{R}^m \subset \mathbb{R}^\infty$, $y \in \mathbb{R}^n \subset \mathbb{R}^\infty$, define

1 Inner product (of x and y):

$$
\langle x, y \rangle_{\mathcal{V}} := \frac{1}{t} \left\langle (x \otimes \mathbf{1}_{t/m}), (y \otimes \mathbf{1}_{t/n}) \right\rangle. \tag{2}
$$

2 Norm (of *x*): $||x||_{\mathcal{V}} := \sqrt{\langle x, x \rangle_{\mathcal{V}}}$. 3 Distance (of *x* and *y*): $d(x, y) := ||x-y||_{\mathcal{V}}$.

Preliminaries **Dimension-free manifolds** Application: dimension-free manifolds Application: dimension- \sim

In the linear case, we shall construct projections from \mathbb{R}^n to \mathbb{R}^m , *∀m, n ∈* N.

Topology on DFES

Denote the topology induced by the above metric on \mathbb{R}^{∞} by \mathcal{T}_d . The following result is crucial.

Proposition 2.1

The map $id : (\mathbb{R}^{\infty}, \mathcal{T}_n) \to (\mathbb{R}^{\infty}, \mathcal{T}_d)$ is continuous.

Preliminaries **Dimension-free manifolds** Application: dimension-free manifolds Application: dimension-free manifolds

In other words, $\mathcal{T}_d \subset \mathcal{T}_n$.

Using *d*, we define the following equivalence relation on R*∞*:

 $\forall x, y \in \mathbb{R}^{\infty}, \quad x \sim y \Leftrightarrow d(x, y) = 0.$

Define $\Omega := \mathbb{R}^{\infty}/\sim$, equip Ω with the quotient topology of \mathcal{T}_d , denoted by *T* .

Preliminaries **Dimension-free manifolds** Application: dimension-free manifolds Application: dimension-varying control systems and control systems are control systems and control systems are control systems and control syst

Hence completes the algebraic and topological constructions on R*∞*:

Theorem 2.1

 $\forall \bar{x}, \bar{y} \in \Omega$, $r \in \mathbb{R}$, define the addition $\vec{+}$ and scalar product as

$$
\overrightarrow{x+y} := \overrightarrow{x+y}, \qquad r \cdot \overrightarrow{x} := \overrightarrow{r \cdot x},
$$

then (Ω, \mathcal{T}) is a topological vector space under $\vec{+}$ and scalar product.

Further, (Ω*, T*) is a **pathwise connected Hausdorff** space, and we have the following diagram of morphisms:

Structure of an Equivalence Class

Preliminaries **Dimension-free manifolds** Application: dimension-free manifolds Application: dimension-free manifolds

One can see that the equivalence defined via the distance can also be rewritten as follows.

Definition 2.3

Let $x, y \in V$. call x, y as equivalent, denoted by $x \leftrightarrow y$, if there exists 1*α*, 1*^β* such that

$$
x \otimes \mathbf{1}_{\alpha} = y \otimes \mathbf{1}_{\beta}.\tag{3}
$$

define the dimension of an element $\bar{x} \in \Omega$ as the smallest Euclidean dimension of the elements equivalent to *x*.

Covering Spaces

Definition 2.4

Let *E*, *B* be topological spaces, and $\Pi : E \rightarrow B$ is a continuous surjection. If for any open set $\mathit{U} \subset B$, we have $\pi^{-1}(\mathit{U}) = \bigsqcup_{\alpha} V_{\alpha}$, where V_α is open set in *E*, and $\forall \alpha$, $V_\alpha \simeq U$, then (E, π, B) is called a covering space.

Preliminaries **Dimension-free manifolds** Application: dimension-free manifolds Application: dimension-free manifolds

Definition 2.5

Let (E_1, π_1, B_1) , (E_2, π_2, B_2) be two covering spaces. If there exists homeomorphisms $\psi : E_1 \to E_2$, $\varphi : B_1 \to B_2$, such that $\pi_2 \circ \psi = \varphi \circ \pi_1$, then these two covering spaces are called homeomorphic.

Dimension-Free Manifolds

We define the dimension-free manifolds via local isomorphism with dimension-free Euclidean spaces.

Preliminaries **Dimension-free manifolds** Application: dimension-free **manifolds** Application: dimension-free manifolds

Definition 2.6

Let *B* be a Hausdorff space with countable topological basis. A covering space $E\overset{P}{\to}B$ is called a dimension-free smooth Euclidean manifold, if it satisfies the following:

- There exists a collection of open subsets $\{U_{\alpha}\}_{{\alpha \in I}} \subset B$, such that $\bigcup_{{\alpha \in I}} U_{\alpha} = B$, and $\forall {\alpha \in I}$, there exists an open set $V_{\alpha} \subset \Omega$ and homeomorphism $\varphi_\alpha: U_\alpha \to V_\alpha$, $\psi_\alpha: \pi^{-1}(U_\alpha) \to P^{-1}(V_\alpha)$, such that $\pi^{-1}(U_\alpha) \stackrel{\pi}{\longrightarrow} U_\alpha$ and $P^{-1}(V_\alpha) \stackrel{P}{\longrightarrow} V_\alpha$ are homeomorphisms of covering spaces.
- $2 \forall \alpha, \beta \in I$, if $U_\alpha \cap U_\beta \neq \emptyset$, then $\varphi_\beta\circ\varphi_\alpha^{-1}:\varphi_\alpha(U_\alpha\cap U_\beta)\to \varphi_\beta(U_\alpha\cap U_\beta)$ and $\psi_\beta\circ\psi_\alpha^{-1}:\psi_\alpha\circ\pi^{-1}(U_\alpha\cap U_\beta)\to\psi_\beta\circ\pi^{-1}(U_\alpha\cap U_\beta)$ are diffeomorphisms.

Construction of DFEMs

The compatibility of coordinate charts implies that the following diagram commutes:

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

$$
P^{-1}(V_{\alpha} \cap V_{\beta}) \xleftarrow{\psi_{\beta}} \pi^{-1}(U_{\alpha} \cap U_{\beta}) \xrightarrow{\psi_{\alpha}} P^{-1}(V_{\alpha} \cap V_{\beta})
$$
\n
$$
\downarrow P
$$
\n
$$
V_{\alpha} \cap V_{\beta} \xleftarrow{\varphi_{\beta}} U_{\alpha} \cap U_{\beta} \xrightarrow{\varphi_{\alpha}} V_{\alpha} \cap V_{\beta}
$$

Projections Between Euclidean Spaces

Preliminaries **Dimension-free manifolds** Application: dimension-free manifolds Application: dimension-free manifolds

Definition 2.7

The projection from \mathbb{R}^n to \mathbb{R}^m , denoted by \varPi^n_m , is defined as

$$
\Pi_m^n(\xi) := \underset{x \in \mathbb{R}^m}{\operatorname{argmin}} \ d(\xi, x), \quad \forall \xi \in \mathbb{R}^n \tag{4}
$$

where the distance is defined as in Definition 1.1.

Proposition 2.2

∀m, n ∈ N, assume lcm(*n, m*) = *t*, *α* := *t/n*, *β* := *t/m*. $\varPi^n_m:\mathbb{R}^n\to\mathbb{R}^m$ is a linear operator, with a matrix representation as

$$
\Pi_m^n = \frac{1}{\beta} \left(I_m \otimes \mathbf{1}_{\beta}^T \right) \left(I_n \otimes \mathbf{1}_{\alpha} \right). \tag{5}
$$

 M oreover, $\langle \Pi_m^n(\xi), \xi - \Pi_m^n(\xi) \rangle_{\mathcal{V}} = 0.$

Functions Over Dimension-Free Manifolds

Preliminaries **Dimension-free manifolds** Application: dimension-free manifolds Application: dimension-free manifolds

Definition 2.8

Let $f: \Omega \to \mathbb{R}$ be a real function on Ω . Define $\tilde{f}: \mathbb{R}^{\infty} \to \mathbb{R}$, $x \mapsto f(\overline{x})$. If ˜*f ∈ C∞*(R*∞*) (with respect to the Euclidean coordinates), then *f* is called a smooth function on Ω.

Proposition 2.3

Let $f \in C^r(\mathbb{R}^n)$. Define $\bar{f} : \Omega \to \mathbb{R}$ as follows: Let $\bar{x} \in \Omega$ and $\dim(\bar{x}) = m$. Then

$$
\bar{f}(\bar{x}) := f(\Pi_n^m(x_1)), \quad \bar{x} \in \Omega,
$$
\n(6)

is smooth on Ω , where $x_1 \in \overline{x}$ is the smallest element in \overline{x} .

Tangent Space of Dimension-Free Manifolds

Preliminaries **Dimension-free manifolds** Application: dimension-free manifolds Application: dimension-free manifolds

Definition 2.9

Let $M = (E, P, B)$ be a smooth dimension-free Euclidean manifold. Denote the germ of smooth functions at $p \in B$ as $C_p^{\infty}(B)$. Consider a map $v: C_p^{\infty}(B) \to \mathbb{R}$, if $\forall [f]$, $[g] \in C_p^{\infty}(B)$, **0** (Linearity) $\forall \alpha, \beta \in \mathbb{R}$, $v(\alpha[f] + \beta[g]) = \alpha v([f]) + \beta v([g])$;

● (Leibniz rule) $v([f][g]) = f(p)v([g]) + g(p)v([f])$,

then *v* is called a tangent vector over *M*. The set of all tangent vectors are called the tangent space of (E, P, B) at p .

Properties of Tangent Space

Preliminaries **Dimension-free manifolds** Application: dimension-free manifolds Application: dimension-free manifolds

Proposition 2.4

 $\forall v \in T_p(E,P,B)$, $\exists \overline{v} : P_*(C^\infty_p(B)) \to \mathbb{R}$, such that $v = \overline{v} \circ P_*.$ where $P_*: C_p^{\infty}(B) \to C_p^{\infty}(E)$, $f \mapsto f \circ P$.

Proposition 2.5

The tangent space $T_p(E, P, B)$ is a linear space homomorphic to $\mathbb{R}^{\dim(p)}$.

Vector Fields Over Dimension-Free Manifolds

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

Definition 2.10

 \bar{X} is called a smooth vector field on Ω , denoted by $\bar{X} \in \mathfrak{X}(\Omega)$, if it satisfies the following conditions:

- (i) At each point $\bar{x} \in \Omega$, there exists $p = \mu \dim(\bar{x})$, called the dimension of the vector field \bar{X} at \bar{x} and denoted by $\dim(\bar{X}_{\bar{x}})$, such that \bar{X} assigns a p sub-lattice to the bundle of coordinate neighborhood at \overline{x} , $\ {\cal V}^{[p,\cdot]}_{O}=\{\,O^p,\,O^{2p},\cdots\,\},$ then at each leaf of this sub-lattice the vector field assigns a vector $X^j \in T_{x_{j\mu}}(O^{jp}), j = 1, 2, \cdots$.
- (ii) $\{X^j | j = 1, 2, \dots\}$ satisfy consistence condition, that is, $X^j|_{x_j \otimes 1_j} = X^1 \otimes 1_j, x_j \in O^{jp}, j = 1, 2, \cdots$.
- (iii) At each leaf $O^{jp} \subset \mathbb{R}^{j\mu \dim(\bar{x})}$,

$$
\bar{X}|_{O^{jp}}\in\mathfrak{X}(O^{jp}).
$$

Construction of Vector Fields

Preliminaries **Dimension-free manifolds** Application: dimension-free manifolds Application: dimension-free manifolds

Algorithm 2.1

• Step 1: Assume there exists a smallest dimension $m > 0$, such that \bar{X} is defined over whole \mathbb{R}^m . That is,

$$
\bar{X}|_{\mathbb{R}^m} := X \in \mathfrak{X}(\mathbb{R}^m). \tag{8}
$$

From the constructing point of view: A vector field $X \in \mathfrak{X}(\mathbb{R}^m)$ is firstly given, such that the value of \bar{X} at leaf \mathbb{R}^m is uniquely determined by (8) .

• Step 2: Extend *X* to $T_{\overline{y}}$. Assume $\dim(\overline{y}) = s$, denote $m \vee s = t$. Then $\dim(T_{\overline{y}}) = t$. Let $y \in \overline{y} \cap R^{[t, \cdot]}$, and $dim(y) = kt, k = 1, 2, \cdots$. Define

$$
\bar{X}(y) := \Pi_{kt}^m X(\Pi_{m}^{kt} y), \quad k = 1, 2, \cdots
$$
 (9)

An Example

Let $X = (x_1 + x_2, x_2^2)^T \in \mathfrak{X}(\mathbb{R}^2)$. Assume $\overline{X} \in \mathfrak{X}(\Omega)$ is generated by X. Consider $\bar{y} \in \Omega$, $\dim(\bar{y}) = 3$, Denote $y_1 = (\xi_1, \xi_2, \xi_3)^T \in \mathbb{R}^3$. Since $2 \vee 3 = 6, \; \bar{X}$ at $\bar{y} \bigcap \mathbb{R}^{6k} = \{y_2, y_4, y_6, \cdots\}$ is well defined. Now consider y_2 .

Preliminaries **Dimension-free manifolds** Application: dimension-free manifolds Application: dimension-free manifolds

$$
\bar{X}(y_2) = \Pi_6^2 X(\Pi_2^6(y_2)) = \left(\begin{matrix}I_2 \otimes \mathbf{1}_3 \end{matrix}\right) X\left(\frac{1}{3}\left(\begin{matrix}I_2 \otimes \mathbf{1}_3^T\end{matrix}\right)(y_1 \otimes \mathbf{1}_2)\right) \\
= \begin{bmatrix} \frac{2}{3}\left(\xi_1 + \xi_2 + \xi_3\right) \\ \frac{2}{3}\left(\xi_1 + \xi_2 + \xi_3\right) \\ \frac{2}{3}\left(\xi_1 + \xi_2 + \xi_3\right) \\ \frac{1}{3}\left(\xi_2 + 2\xi_3\right)^2 \\ \frac{1}{9}\left(\xi_2 + 2\xi_3\right)^2 \\
\frac{1}{9}\left(\xi_2 + 2\xi_3\right)^2\n\end{bmatrix}.
$$

Consider *y*4, similar calculation shows that

$$
\bar{X}(y_4) = \Pi_{12}^2 X(\Pi_2^{12}(y_4)) = \bar{X}(y_2) \otimes \mathbf{1}_2.
$$

In fact, we have

$$
\bar{X}(y_{2k}) = \bar{X}(y_2) \otimes \mathbf{1}_k, \quad k = 1, 2, \cdots.
$$

An Example (Cont'd)

 $\mathsf{Consider} \ \bar{X}|_{\mathbb{R}^6}$: $\mathcal{Z} = (z_1, z_2, z_3, z_4, z_5, z_6)^T \in \mathbb{R}^6$. Then

Preliminaries **Dimension-free manifolds** Application: dimension-free manifolds Application: dimension-varying control systems and control systems are control systems and control systems are control systems and control syst

$$
X^{6} := \bar{X}_{z} = \Pi_{6}^{2} X(\Pi_{2}^{6} z) = \begin{bmatrix} \frac{1}{3}(z_{1} + z_{2} + z_{3} + z_{4} + z_{5} + z_{6}) \\ \frac{1}{3}(z_{1} + z_{2} + z_{3} + z_{4} + z_{5} + z_{6}) \\ \frac{1}{3}(z_{1} + z_{2} + z_{3} + z_{4} + z_{5} + z_{6}) \\ \frac{1}{9}(z_{4} + z_{5} + z_{6})^{2} \\ \frac{1}{9}(z_{4} + z_{5} + z_{6})^{2} \\ \frac{1}{9}(z_{4} + z_{5} + z_{6})^{2} \end{bmatrix}.
$$
\n(10)

 $X^6 \in \mathfrak{X}(\mathbb{R}^6)$ is a standard vector field.

Generalizing DFES to Manifolds

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

We begin with constructing dimension-free manifolds as quotient spaces.

Definition 2.11

Given a Riemannian manifold *M* and an isometry *φ* : *M → M* over it, denote by $M^n := M \times \cdots \times M$ $\overbrace{}^{n}$ endowed with the product topology. the *n*-fold Cartesian product of *M*, The dimension-free manifold generated by (M, φ) is defined as $\tilde{M} := M^{\infty} / \sim$ (11) where $M^{\infty}:=\bigsqcup_{n=1}^{\infty}M^{n},$ and the equivalence relation over M^{∞} is defined as

∀s > 0, *∀k* > 0, *∀*(x_1, \cdots, x_s) ∈ M^s , $(x_1, \dots, x_s) \sim (x_1, \dots, x_s, \varphi(x_1), \dots, \varphi(x_s), \dots, \varphi^k(x_1), \dots, \varphi^k(x_s)).$

Vector Fields Over Dimension-Free Manifolds

Preliminaries **Dimension-free manifolds** Application: dimension-free manifolds Application: dimension-free manifolds

Proposition 2.6

A vector field $f\in \mathfrak{X}(M^s)$ can be extended to \tilde{M} in the following way: assume *y ∼* (*x*1*, · · · , xs*), without loss of generality, let $y=(x_1,\cdots,x_s,\varphi(x_1),\cdots,\varphi(x_s),\cdots,\varphi^k(x_1),\cdots,\varphi^k(x_s)),$ then the value of extended vector field \tilde{f} at y can be defined as:

$$
\tilde{f}|_y := (f_1|_{x_1}, \cdots, f_s|_{x_s}, \varphi_*(f_1|_{x_1}), \cdots, \varphi_*(f_s|_{x_s}), \cdots, \varphi_*^k(f_1|_{x_1}), \cdots, \varphi_*^k(f_s|_{x_s})).
$$

One can easily see that if we take the manifold *M* in Definition 12 as $\mathbb R$ and let $\varphi := id$, then the above definition coincides with our \mathbf{g} eneral form. Similarly, in the linear case, $\widetilde{\mathit{f}}|_{x\otimes \mathbf{1}_k}:=\mathit{f}|_x\otimes \mathbf{1}_k.$

Dimension-Varying Linear Systems

Consider a linear system over R *n* as

$$
\dot{x}(t) = Ax(t) + Bu(t) \tag{12}
$$

where $u \in \mathbb{R}^m$. Using the projection we can construct a leas<mark>t</mark> square approximate system of (12) on \mathbb{R}^m , $\forall m \in \mathbb{N}$.

$$
\Sigma_m: \ \dot{\xi}(t) = A_H \xi(t) + H_m^p B u(t)
$$

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

where

$$
A_{\Pi} = \begin{cases} \n\Pi_m^n A (\Pi_m^n)^{\mathrm{T}} \left(\Pi_m^n (\Pi_m^n)^{\mathrm{T}} \right)^{-1} & n \geq m \\ \n\Pi_m^n A \left((\Pi_m^n)^{\mathrm{T}} \Pi_m^n \right)^{-1} (\Pi_m^n)^{\mathrm{T}} & n < m. \n\end{cases} \tag{13}
$$

Hence we have defined a family of linear systems on R*[∞]* corresponding to the system Σ.

Projection Systems

Definition 3.1

Let

$$
\dot{\overline{x}} = \overline{F}(\overline{x}), \quad \overline{x} \in \Omega.
$$
 (14)

be a system on Ω . A dynamic system

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

 $\dot{x} = F(x), \quad x \in \mathbb{R}^n \subset \mathbb{R}$ *∞,* (15)

is called a realization (or a lifting) of (14) , if for each \bar{x} there exists $x \in \bar{x}$, such that the corresponding vector field $F(x) \in \bar{F}(\bar{x})$. Meanwhile, system (14) is called the projection system of (15).

Lift and Projection of Control Systems

Definition 3.2

Consider control system

$$
\Sigma^{C}: \quad \dot{x} = F(x, u), \quad x \in \mathbb{R}^{p}, \quad u \in \mathbb{R}^{r}.
$$

 $u = u_1, \dots, u_r$ can be considered as controlled parameters. Then its projection to R^q is

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

$$
\Pi_q^p(\Sigma^C): \ \dot{z} = \tilde{F}(z, u), \quad z \in \mathbb{R}^q, \ u \in \mathbb{R}^r, \tag{17}
$$

where

$$
\tilde{F}(z, u) = \Pi_q^p F(\Pi_p^q(z), u). \tag{18}
$$

Integral Curves

Definition 3.3

Let $\bar{X} \in \mathfrak{X}(\Omega)$. $\bar{x}(t, \bar{x}_0)$ is called the integral curve of \bar{X} with initial value \bar{x}_0 , denoted by $\bar{x}(t,\bar{x}_0)=\varPhi^{\bar{X}}_t(\bar{x}_0)$, if for each initial value $x_0 \in \bar{x}_0 \bigcap \mathbb{R}^n$, and each generator of \bar{X} , denoted by $X = \bar{X}|_{\mathbb{R}^n}$, the following condition holds:

Preliminaries **Dimension-free manifolds Application: dimension-varying control system**
https://www.com/application://www.com/application://www.com/application://www.com/application://www.com/application
https://www.com/a

$$
\Phi_t^{\bar{X}}(\bar{x}_0)|_{\mathbb{R}^n} = \overline{\Phi_t^X(x_0)}, \quad t \ge 0.
$$
\n(19)

Integral Curves of Linear Vector Fields

Proposition 3.1

Let $\bar{X} \in \mathfrak{X}(\Omega)$ be a linear vector field, and $\dim(\bar{X}) = m$. $X := \overline{X}|_{\mathbb{R}^m} = Ax$. Assume $\overline{x}^0 \in \Omega$, $\dim(\overline{x}^0) = s$.

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

- (i) If $s = m$, then the integral curve of $\bar{X}|_{\mathbb{R}^m}$ is $\Phi_t^X(x_1^0) = e^{Xt}x_1^0$. Hence, i the integral curve of $\bar{X}|_{\mathbb{R}^{rm}}$ becomes $\varPhi_t^{X_r}(x_r^0) = \big[\mathrm{e}^{Xt}x_1^0\big]\otimes \mathbf{1}_r.$ The i integral curve of \bar{X} with initial value \bar{x}^0 is $\overline{\varPhi^X_t(x^0_1)}\subset \Omega.$
- (ii) If $s = km$, then the integral curve of $\bar{X}|_{\mathbb{R}^{km}}$ is $\Phi_t^{X_k}(x_1^0) = e^{X_k t} x_1^0$, where

$$
X_k := \bar{X}(y) = \Pi_{km}^m(X(\Pi_m^{km}(y))) = \Pi_{km}^m A \Pi_m^{km} y := A_k y, \ y \in \mathbb{R}^{km}.
$$

. Hence the integral curve of \bar{X} with initial value \bar{x}^0 is $\overline{\varPhi^{X_k}_t(x^0_1)}\subset \Omega.$

(iii) If $m \vee s = p = km = rs$, then the integral curve of $\bar{X}|_{\mathbb{R}^p}$ is $\varPhi_t^{X_k}(x_r^0)=\mathrm{e}^{X_k t}(x_1^0\otimes I_s).$ Hence, the integral curve of \bar{X} with initial $\text{value } \bar{x}^0 \text{ is } \Phi_t^{X_k}(x_1^0 \otimes I_s) \subset \Omega.$

44 / 51

Definition 3.4

Consider an affine nonlinear control system on Ω , described by

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

$$
\begin{cases}\n\dot{\overline{x}}(t) = \overline{f}(x) + \sum_{i=1}^{m} \overline{g}_i(x) u^i, \\
\overline{y}_j(t) = \overline{h}_j(\overline{x}(t)), \quad j \in [1, p],\n\end{cases}
$$
\n(20)

 $\text{where } \dim(\bar{f}) = n_0, \ \dim(\bar{g}_i) = n_i, \ i \in [1, m], \ \dim(\bar{h}_j) = r_j,$ j \in $[1, p]$. Let $n = (\bigvee_{i=0}^{m} n_i) \bigvee \left(\bigvee_{j=1}^{p} r_j\right)$, then

$$
\begin{cases} \n\dot{\bar{x}}(t) = f^n(x) + \sum_{i=1}^m g_i^n(x) u_i, \\
y_j(t) = h_j^n(\bar{x}(t)), \quad j \in [1, p],\n\end{cases}
$$
\n(21)

where $f^n = \bar{f}|_{\mathbb{R}^n}$, $g_i^n = \bar{g}_i|_{\mathbb{R}^n}$, $i \in [1, m]$, $h_j^n = \bar{g}_j|_{\mathbb{R}^n}$, $j \in [1, p]$. (21) is called the minimum realization of (20).

An Example

Consider a linear control system $\bar{\Sigma}$ over Ω , which has its dynamic equation as Eq. (21), where \bar{f} has its smallest generator $f\!(x) = 2[x_1 + x_2, x_2]^{\text{T}} \in \mathfrak{X}(\mathbb{R}^2)$, $m=2$, the smallest generator of \bar{g}_1 is $g_1 = [1,0,0,1]^{\mathrm{T}} \in \mathfrak{X}(\mathbb{R}^4)$, the smallest generator of \bar{g}_2 is $g_2 = [0, 1, 0, 0]^{\text{T}} \in \mathfrak{X}(\mathbb{R}^4)$. $p = 1$, $\bar{h}|_{\mathbb{R}^2} = x_2 - x_1$. Then, $q = 4$. We try to analyse the control properties concerning this system.

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

An Example (Cont'd)

$$
\bar{f}|_{\mathbb{R}^4} = \Pi_4^2 f \big(\Pi_2^4 [z_1, z_2, z_3, z_4]^{\mathrm{T}} \big) \n= \begin{bmatrix} z_1 + z_2 + z_3 + z_4 \\ z_1 + z_2 + z_3 + z_4 \\ z_3 + z_4 \\ z_3 + z_4 \end{bmatrix} := Az,
$$

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

where,

$$
A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}.
$$

 $\bar{h}|_{\mathbb{R}^4} = h(\Pi_2^4 z) = h(z_1 + z_2, z_3 + z_4) = z_1 + z_2 - z_3 - z_4 := Cz$ where $C = [1, 1, -1, -1]$.

An Example (Cont'd)

Then the smallest generator of system $\bar{\Sigma}$, denoted by $\Sigma := \bar{\Sigma}|_{\mathbb{R}^4}$, is

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

$$
\begin{cases} \dot{z} = Az + Bu, \\ y = Cz. \end{cases}
$$

Then it is easy to calculate that the controllability matrix of Σ is

$$
\mathcal{C} = \begin{bmatrix} 1 & 0 & 2 & 1 & 6 & 2 & 16 & 4 \\ 0 & 1 & 2 & 1 & 6 & 2 & 16 & 4 \\ 0 & 0 & 1 & 0 & 2 & 0 & 4 & 0 \\ 1 & 0 & 1 & 0 & 2 & 0 & 4 & 0 \end{bmatrix}.
$$

Since $\text{rank}(\mathcal{C}) = 4$, Σ is completely controllable. By definition, $\bar{\Sigma}$ is completely controllable.

Conclusions and Outlook

Possible applications for DFEMs:

- Dimension-varying systems;
- Projection of high-dimensional systems;

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

• Synchronous multi-agent systems.

References

- D. Cheng, *From Dimension-Free Matrix Theory to Cross-Dimensional Dynamic Systems*, Elsevier, UK, 2019.
- D. Cheng, On equivalence of matrices, *Asian Journal of Mathematics*, Vol. 23, No. 2, 257-348, 2019.
- D. Cheng, Z. Ji, From dimension-free manifolds to dimension-varying control systems, *Communications in Information and Systems*, Vol. 23, No. 1, 85-150, 2023.

Preliminaries Dimension-free manifolds Application: dimension-varying control systems

D. Cheng, Z. Ji, *Lectures on Semi-Tensor Product of Matrices, Vol. 4: Finite and Dimension-Free Systems*, Science Press, Beijing, 2023 (In Chinese).

Thanks for your attention!

Preliminaries Dimension-free manifolds Application: dimension-varying control systems