An Introduction to Dimension-Free Manifolds With Applications to Control Systems

Zhengping Ji

Academy of Mathematics and Systems Science, Chinese Academy of Sciences

August 16, 2023 Liaocheng, China Preliminaries

Background: Dimension-Varying Systems

(a) Spacecraft docking

(b) Vehicle clutch system

(c) Internet

(d) Genetic regulatory networks

Figure 1: Dimension-varying Systems

Outline of the course

- Basic notions and examples in differential topology
- Construction of dimension-free manifolds
- Application: dimension-varying control systems

 Dimension-free manifolds

Application: dimension-varying control systems

Equivalence and Partitions

Definition 1.1

A binary relation \sim over a set X is called an equivalence relation, if $\forall x, y, z \in X$,

• (reflexive)
$$x \sim x$$
;

② (symmetric)
$$x \sim y \Rightarrow y \sim x$$
;

(transitive) $x \sim y$, $y \sim z \Rightarrow x \sim z$.

Application: dimension-varying control systems 00000000000

Quotient Sets

Definition 1.2

Consider a set X and an equivalence \sim on it. $\forall a \in X$, call a subset $[a] := \{x \in X \mid x \sim a\} \subset X$ an equivalence class with a representative element a. The set of all equivalence classes in X is called the quotient set of X with respect to equivalence \sim , denoted by X/\sim . The surjective map $\pi : X \to X/\sim$, $a \mapsto [a]$ is called the canonical map or quotient map.

Application: dimension-varying control systems 00000000000

Examples

Some examples of quotient sets from equivalences:

• Let p be an integer. $\forall x, y \in \mathbb{Z}$, define $x \sim y \Leftrightarrow x = y \pmod{p}$, then it gives an equivalence on \mathbb{Z} , and the equivalence classes are the integers modulo p.

2 Let $p \in \mathbb{R}^n$, define

 $\mathcal{U}_p := \{ U \in \mathbb{R}^n | U \text{ is an open set containing } p \}.$

 $\begin{array}{l} \forall U \in \mathcal{U}_p, \text{ denote by } C^{\infty}(U) \text{ all smooth functions over } U, \text{ let} \\ \mathcal{F} := \bigcup_{U \in \mathcal{U}_p} C^{\infty}(U), \text{ and define an equivalence on } \mathcal{F} \text{ by } \sim: \\ \forall f, g \in \mathcal{F}, \text{ for any } f \in C^{\infty}(U), \ g \in C^{\infty}(V), \end{array}$

$$f \sim g \Leftrightarrow \exists W \in \mathcal{U}_p \text{ s.t. } W \subset U \cap V, f|_W = g|_W.$$

denote the quotient space by $C_p^\infty:=\mathcal{F}/\sim$, which is called the germ of smooth functions at p.

Application: dimension-varying control systems

A Special Class of Quotient Sets

Definition 1.3

Consider a set X and its subset S, define the following equivalence \sim : $\forall x, y \in X, x \sim y \Leftrightarrow \{x, y\} \subset S$. Denote the quotient set of X with respect to this equivalence as X/S, called the quotient set of X with respect to S.

Example: consider a finite automaton with observation, denoted by $\mathcal{A} = (X, Y, \Sigma, f, h, x_0, X_m)$. Define an equivalence over X as $x_1 \sim x_2 \Leftrightarrow h(x_1) = h(x_2)$, then the quotient space follows. Obviously, this is the quotient space with respect to $h^{-1}(y)$, $y \in Y$.

Application: dimension-varying control systems

Topological Spaces

Definition 1.4

A topology \mathcal{T} on a set X is a collection of subsets of X satisfying the following axioms:

(i)
$$\varnothing \in \mathcal{T}, X \in \mathcal{T}.$$

(ii) $\forall O_1, O_2 \in \mathcal{T}, O_1 \cap O_2 \in \mathcal{T}.$

(iii)
$$\forall \{O_i\}_{i=1,2,\cdots} \subset \mathcal{T}, \bigcup_i O_i \in \mathcal{T}.$$

The sets in $\ensuremath{\mathcal{T}}$ are called open sets; the complement of an open set is called a closed set.

Consider two topologies \mathcal{T}_1 , \mathcal{T}_2 on X. If $\mathcal{T}_1 \subset \mathcal{T}_2$, then we say \mathcal{T}_2 is finer (or bigger) than \mathcal{T}_1 , and \mathcal{T}_1 is coarser (or smaller) than \mathcal{T}_2 .

Application: dimension-varying control systems 00000000000

Euclidean Topology

Definition 1.5

Denote by d the Euclidean norm on \mathbb{R}^n , $p \in \mathbb{R}^n$, r > 0, define $B_r(p) := \{q \in \mathbb{R}^n | d(p,q) < r\}$, and define the open sets as arbitrary unions of $B_r(p)$, $\forall p \in \mathbb{R}^n$, $\forall r > 0$, the topology derived is called the Euclidean topology on \mathbb{R}^n .

Remark 1.1

A subset family $\mathcal{B} \subset \mathcal{T}$ is called the topological base of (X, \mathcal{T}) , if every open set can be represented as the union of some sets in \mathcal{B} .

Application: dimension-varying control systems

Continuous Maps and Homeomorphisms

Definition 1.6

Consider a map $f: (X_1, \mathcal{T}_1) \to (X_2, \mathcal{T}_2)$ between topological spaces. If $\forall O \in \mathcal{T}_2$, $f^{-1}(O) \in \mathcal{T}_1$, Then f is called a continuous map. If f is a bijection and its inverse is also continuous, it is called a homeomorphism between X_1 and X_2 , and X_1 , X_2 are called homeomorphic.

An open set containing x is called a neighbourhood of x. The above definition is equivalent to the following classical definition of continuity in function theory:

Definition 1.7

If $\forall x \in X_1$, for any neighbourhood V of f(x) in X_2 , there exist a neighbourhood $U \subset X_1$ of x, such that $f(U) \subset V$, then f is called a continuous map.

Application: dimension-varying control systems 00000000000

Topology From Mappings

Proposition 1.1

Consider a map $f: X \to (Y, \mathcal{T})$, let \mathcal{T} be the topology on Y. define a collection of subsets over X consisting of the arbitrary union and finite intersection of the preimages of sets in \mathcal{T} as

$$\mathcal{T}_{f} := \left\{ f^{-1}(U_{1}) \cap \dots \cap f^{-1}(U_{n}) \middle| \{U_{i}\}_{i=1}^{n} \subset \mathcal{T}, n \in \mathbb{N} \right\}$$
$$\cup \left\{ \bigcup_{\lambda \in \Lambda} f^{-1}(U_{\lambda}) \middle| \{U_{\lambda}\}_{\lambda \in \Lambda} \subset \mathcal{T} \right\}$$

then \mathcal{T}_f is the coarsest topology on X making the map fcontinuous, that is: for any topology \mathcal{T}_X on X, if $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T})$ is continuous, then $\mathcal{T}_f \subset \mathcal{T}_X$. Dually, for a map $g: (Y, \mathcal{T}) \to Z$, define the subset collection of Zas the arbitrary union and finite intersection of the images of sets in \mathcal{T} , denoted by \mathcal{T}_g , then \mathcal{T}_g is the finest topology on Z making gcontinuous.

Application: dimension-varying control systems 00000000000

Quotient Topological Spaces

Definition 1.8

Consider a topological space (X, \mathcal{T}) and a quotient space X/\sim of X. The finest topology on X/\sim making the quotient map continuous is called the quotient topology on X/\sim , denoted by $\overline{\mathcal{T}}$. $(X/\sim,\overline{\mathcal{T}})$ is called the quotient topological space of X with respect to \sim .

Proposition 1.2

If X, Y are topological spaces and X/\sim is the quotient space of X, let $f: X/\sim \rightarrow Y$ be any function, then f is continuous if and only if $f \circ \pi$ is continuous.

Application: dimension-varying control systems

Examples of Quotient Spaces

- The two-dimensional torus is the set $\mathbb{T}^2 := \mathbb{R}^2 / \sim$, where \sim is defined as: $x \sim y \Leftrightarrow x y \in \mathbb{Z} \times \mathbb{Z}$.
- The Möbius band is constructed as follows: consider a set
 $B: [0,1] \times (0,1) \subset \mathbb{R}^2$ endowed with Euclidean product,
 define (0, a) ~ (1, −a), ∀a ∈ (0, 1). The corresponding
 quotient space B/ ~ is called the Möbius band.
- Denote by $D^n := \{(x_1, \cdots, x_n) \in \mathbb{R}^n \mid x_1^2 + \cdots + x_n^2 \leq 1\}$ the *n*-dimensional closed disk, let $S^{n-1} := \{(x_1, \cdots, x_n) \in \mathbb{R}^n \mid x_1^2 + \cdots + x_n^2 = 1\}$ be the n - 1-dimensional sphere, which is the boundary of D^n , then $D^n/S^{n-1} \simeq S^n$.

Application: dimension-varying control systems ${\tt 000000000000}$

Smooth Manifolds

Definition 1.9

Let (M, \mathcal{T}) be a Hausdorff space with countable topological basis. If $\exists \{U_{\alpha}\}_{\alpha \in I} \subset \mathcal{T}$ satisfying $M = \bigcup_{\alpha \in I} U_{\alpha}$ and

• $\forall \alpha \in I$, there exists open set $V_{\alpha} \subset \mathbb{R}^n$ and homeomorphism $\varphi_{\alpha} : U_{\alpha} \to V_{\alpha}$;

2
$$\forall \alpha, \beta \in I$$
, if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then
 $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \rightarrow \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ and its inverse are
both smooth maps,

then *M* is called an *n*-dimensional smooth manifold, $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in I}$ is called a set of coordinates of *M*.

Application: dimension-varying control systems

Tangent Vectors

Definition 1.10

Denote the germ of smooth functions at $p \in M$ as C_p^{∞} , let $v: C_p^{\infty} \to \mathbb{R}$ be a real function over C_p^{∞} , if $\forall [f], [g] \in C_p^{\infty}$, v satisfies

- (Linearity) $\forall \alpha, \beta \in \mathbb{R}, v(\alpha[f] + \beta[g]) = \alpha v([f]) + \beta v([g]);$
- **2** (Leibniz rule) v([f][g]) = f(p)v([g]) + g(p)v([f]),

then v is called a tangent vector at p. The set of all tangent vectors at p is called the tangent space of M at p, denoted by T_pM .

Application: dimension-varying control systems

Structure of Tangent Spaces

Given a coordinate $(U, \{y^i\}_{i=1}^n)$ of an *n*-dimensional manifold M, the tangent space T_pM can be viewed as the real vector space spanned by $\{\frac{\partial}{\partial y^i}\}_{i=1}^n$, where $\frac{\partial}{\partial y^i}: C_p^\infty \to \mathbb{R}, f \mapsto \frac{\partial f}{\partial y^i}|_p$ acts on a function by solving its partial derivative at p with respect to the *i*-th variable. Therefore, under this coordinate v can be represented as $v = \sum_{i=1}^n v_i \frac{\partial}{\partial y^i}, v(f) = \sum_{i=1}^n v_i \frac{\partial f}{\partial y^i}|_p$, where $v^i \in \mathbb{R}, i = 1, \cdots, n$.

Application: dimension-varying control systems 00000000000

Tangent Maps

Definition 1.11

Let $f: M \to N$ be a smooth map between smooth manifolds. Let $p \in M, q = f(p) \in N$, there is a map $f^*: C_q^{\infty} \to C_p^{\infty}, [g] \mapsto [g \circ f]$. Further, if $v \in T_pM$, then $v \circ f^* \in T_qM$, and f induces a map $f_*: T_pM \to T_qM, v \mapsto v \circ f^*$, called the tangent map of f at p.

Figure 2: Tangent maps

Application: dimension-varying control systems

Properties of Tangent Maps

Tangent maps can be viewed as infinitesimal characterization of smooth maps. Consider a smooth curve $\gamma:[0,1] \to M$ on the manifold M, its image under f is a smooth curve $f \circ \gamma:[0,1] \to N$ on N, let $a \in [0,1]$, $\gamma(a) = p$, $\dot{\gamma} = v \in T_pM$, then

$$f_*(v) = \frac{\mathrm{d}}{\mathrm{d}t} f(\gamma(t))|_{t=a}.$$

Proposition 1.3

Let M, N, O be smooth manifolds, $f, g: M \to N$, $h: N \to O$ be smooth maps, id_M be the identity map.

•
$$(\operatorname{id}_M)_*|_p = \operatorname{id}_{T_pM};$$

•
$$(h \circ g)_* = h_* \circ g_*;$$

•
$$(\alpha f + \beta g)_* = \alpha f_* + \beta g_*, \ \forall \alpha, \beta \in \mathbb{R}.$$

Application: dimension-varying control systems 00000000000

Smooth Vector Fields

Definition 1.12

Let M be a manifold, assigning a tangent vector at each point $p \in M$ yields a vector field over M, denoted by X; $X|_p \in T_pM$ represents the value X takes at p. If $\forall f \in C^{\infty}(M)$, $X(f) \in C^{\infty}(M)$, then call X a smooth vector field over M. The set of all smooth vector fields over M is denoted by $\mathfrak{X}(M)$.

Proposition 1.4

Let M be an n-dimensional manifold, then $X \in \mathfrak{X}(M)$ if and only if for any coordinate $(U, \{y^i\}_{i=1}^n)$, $X|_U = \sum_{i=1}^n f^i \frac{\partial}{\partial y^i}$, where f^i is a smooth function over U, $i = 1, \cdots, n$.

Application: dimension-varying control systems 00000000000

Integral Curves and Affine Control Systems

Definition 1.13

Let M be a manifold, $U \subset M$ is an open set, $X \in \mathfrak{X}(U)$, $\gamma : [a, b] \to U$ is a smooth map. If $\dot{\gamma}(t) := \gamma_*(\frac{\mathrm{d}}{\mathrm{d}t}) = X|_{\gamma(t)}$, then γ is called an integral curve of X.

Definition 1.14

Consider $f, g_1, \cdots, g_m \in \mathfrak{X}(M)$, the integral curve corresponding to

$$\dot{\gamma}_u(t) = f|_{\gamma_u(t)} + \sum_{i=1}^m u^i g_i|_{\gamma_u(t)}$$

is called an affine control system on M, where the bounded functions $u^i:[0,\,T]\to\mathbb{R}$ are called controls.

 Application: dimension-varying control systems

Pan-Dimensional State Space

We view all *n*-dimensional real Euclidean spaces as \mathbb{R}^n . Define the topological sum

$$\mathbb{R}^{\infty} := \bigsqcup_{n \in \mathbb{N}^+} \mathbb{R}^n$$

where each \mathbb{R}^n possesses the *n*-dimensional Euclidean topology. Denote this natural topology on \mathbb{R}^∞ as \mathcal{T}_n .

Our aim is to make \mathbb{R}^{∞} a (topological) vector space.

Vector Addition

Definition 2.1

$$\forall x \in \mathbb{R}^m \subset \mathbb{R}^\infty, \ y \in \mathbb{R}^n \subset \mathbb{R}^\infty.$$
 Denote $\mathbf{1}_k := [\underbrace{1, \cdots, 1}_k]^T$.

The vector addition (V-addition):

$$x + y := (x \otimes \mathbf{1}_{t/m}) + (y \otimes \mathbf{1}_{t/n}) \in \mathbb{R}^{\infty},$$
 (1)

where t = lcm(m, n) is the least common multiple of m and n. Correspondingly, the substraction is defined as $\vec{x-y} := \vec{x+}(-y)$.

Inner Product

Definition 2.2

$$\forall x \in \mathbb{R}^m \subset \mathbb{R}^\infty$$
, $y \in \mathbb{R}^n \subset \mathbb{R}^\infty$, define

1 Inner product (of x and y):

$$\langle x, y \rangle_{\mathcal{V}} := \frac{1}{t} \left\langle (x \otimes \mathbf{1}_{t/m}), (y \otimes \mathbf{1}_{t/n}) \right\rangle.$$
 (2)

In the linear case, we shall construct projections from \mathbb{R}^n to \mathbb{R}^m , $\forall m, n \in \mathbb{N}$.

Application: dimension-varying control systems 00000000000

Topology on DFES

Denote the topology induced by the above metric on \mathbb{R}^{∞} by \mathcal{T}_d . The following result is crucial.

Proposition 2.1

The map $\mathrm{id}:(\mathbb{R}^\infty,\mathcal{T}_n)\to(\mathbb{R}^\infty,\mathcal{T}_d)$ is continuous.

In other words, $\mathcal{T}_d \subset \mathcal{T}_n.$

Using d, we define the following equivalence relation on \mathbb{R}^{∞} :

$$\forall x, y \in \mathbb{R}^{\infty}, \quad x \sim y \Leftrightarrow d(x, y) = 0.$$

Define $\Omega := \mathbb{R}^{\infty} / \sim$, equip Ω with the quotient topology of \mathcal{T}_d , denoted by \mathcal{T} .

Application: dimension-varying control systems 00000000000

Hence completes the algebraic and topological constructions on \mathbb{R}^∞ :

Theorem 2.1

 $orall ar x, ar y \in \Omega$, $r \in \mathbb{R}$, define the addition ec + and scalar product as

$$\bar{x} + \bar{y} := \overline{x + y}, \qquad r \cdot \bar{x} := \overline{r \cdot x},$$

then (Ω, \mathcal{T}) is a topological vector space under $\vec{+}$ and scalar product.

Further, (Ω,\mathcal{T}) is a pathwise connected Hausdorff space, and we have the following diagram of morphisms:

Application: dimension-varying control systems ${\tt 000000000000}$

Structure of an Equivalence Class

One can see that the equivalence defined via the distance can also be rewritten as follows.

Definition 2.3

Let $x, y \in \mathcal{V}$. call x, y as equivalent, denoted by $x \leftrightarrow y$, if there exists $\mathbf{1}_{\alpha}$, $\mathbf{1}_{\beta}$ such that

$$x \otimes \mathbf{1}_{\alpha} = y \otimes \mathbf{1}_{\beta}. \tag{3}$$

define the dimension of an element $\bar{x} \in \Omega$ as the smallest Euclidean dimension of the elements equivalent to x.

Application: dimension-varying control systems 00000000000

Covering Spaces

Definition 2.4

Let E, B be topological spaces, and $\Pi : E \to B$ is a continuous surjection. If for any open set $U \subset B$, we have $\pi^{-1}(U) = \bigsqcup_{\alpha} V_{\alpha}$, where V_{α} is open set in E, and $\forall \alpha$, $V_{\alpha} \simeq U$, then (E, π, B) is called a covering space.

Definition 2.5

Let (E_1, π_1, B_1) , (E_2, π_2, B_2) be two covering spaces. If there exists homeomorphisms $\psi : E_1 \to E_2$, $\varphi : B_1 \to B_2$, such that $\pi_2 \circ \psi = \varphi \circ \pi_1$, then these two covering spaces are called homeomorphic.

Application: dimension-varying control systems

Dimension-Free Manifolds

We define the dimension-free manifolds via local isomorphism with dimension-free Euclidean spaces.

Definition 2.6

Let B be a Hausdorff space with countable topological basis. A covering space $E \xrightarrow{P} B$ is called a dimension-free smooth Euclidean manifold, if it satisfies the following:

• There exists a collection of open subsets $\{U_{\alpha}\}_{\alpha\in I} \subset B$, such that $\bigcup_{\alpha\in I} U_{\alpha} = B$, and $\forall \alpha \in I$, there exists an open set $V_{\alpha} \subset \Omega$ and homeomorphism $\varphi_{\alpha} : U_{\alpha} \to V_{\alpha}, \psi_{\alpha} : \pi^{-1}(U_{\alpha}) \to P^{-1}(V_{\alpha})$, such that $\pi^{-1}(U_{\alpha}) \xrightarrow{\pi} U_{\alpha}$ and $P^{-1}(V_{\alpha}) \xrightarrow{P} V_{\alpha}$ are homeomorphisms of covering spaces.

2
$$\forall \alpha, \beta \in I$$
, if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then
 $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \rightarrow \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ and
 $\psi_{\beta} \circ \psi_{\alpha}^{-1} : \psi_{\alpha} \circ \pi^{-1}(U_{\alpha} \cap U_{\beta}) \rightarrow \psi_{\beta} \circ \pi^{-1}(U_{\alpha} \cap U_{\beta})$ are diffeomorphisms.

Application: dimension-varying control systems 00000000000

Construction of DFEMs

The compatibility of coordinate charts implies that the following diagram commutes:

Application: dimension-varying control systems 00000000000

Projections Between Euclidean Spaces

Definition 2.7

The projection from \mathbb{R}^n to \mathbb{R}^m , denoted by Π^n_m , is defined as

$$\Pi_m^n(\xi) := \operatorname*{argmin}_{x \in \mathbb{R}^m} d(\xi, x), \quad \forall \xi \in \mathbb{R}^n$$
(4)

where the distance is defined as in Definition 1.1.

Proposition 2.2

$$\forall m, n \in \mathbb{N}$$
, assume $lcm(n, m) = t$, $\alpha := t/n$, $\beta := t/m$.

 $\varPi_m^n:\mathbb{R}^n\to\mathbb{R}^m$ is a linear operator, with a matrix representation as

$$\Pi_m^n = \frac{1}{\beta} \left(I_m \otimes \mathbf{1}_\beta^T \right) \left(I_n \otimes \mathbf{1}_\alpha \right).$$
(5)

Moreover, $\langle \Pi_m^n(\xi), \xi - \Pi_m^n(\xi) \rangle_{\mathcal{V}} = 0.$

Functions Over Dimension-Free Manifolds

Definition 2.8

Let $f: \Omega \to \mathbb{R}$ be a real function on Ω . Define $\tilde{f}: \mathbb{R}^{\infty} \to \mathbb{R}$, $x \mapsto f(\bar{x})$. If $\tilde{f} \in C^{\infty}(\mathbb{R}^{\infty})$ (with respect to the Euclidean coordinates), then f is called a smooth function on Ω .

Proposition 2.3

Let $f \in C^r(\mathbb{R}^n)$. Define $\overline{f} \colon \Omega \to \mathbb{R}$ as follows: Let $\overline{x} \in \Omega$ and $\dim(\overline{x}) = m$. Then

$$\bar{f}(\bar{x}) := f(\Pi_n^m(x_1)), \quad \bar{x} \in \Omega,$$
(6)

is smooth on Ω , where $x_1 \in \overline{x}$ is the smallest element in \overline{x} .

Application: dimension-varying control systems

Tangent Space of Dimension-Free Manifolds

Definition 2.9

Let M = (E, P, B) be a smooth dimension-free Euclidean manifold. Denote the germ of smooth functions at $p \in B$ as $C_p^{\infty}(B)$. Consider a map $v : C_p^{\infty}(B) \to \mathbb{R}$, if $\forall [f], [g] \in C_p^{\infty}(B)$,

- (Linearity) $\forall \alpha, \beta \in \mathbb{R}, v(\alpha[f] + \beta[g]) = \alpha v([f]) + \beta v([g]);$
- **2** (Leibniz rule) v([f][g]) = f(p)v([g]) + g(p)v([f]),

then v is called a tangent vector over M. The set of all tangent vectors are called the tangent space of (E, P, B) at p.

Dimension-free manifolds

Application: dimension-varying control systems

Properties of Tangent Space

Proposition 2.4

 $\begin{array}{l} \forall v \in \ T_p(E,P,B), \ \exists \overline{v} : P_*(C_p^\infty(B)) \to \mathbb{R}, \ \text{such that} \ v = \overline{v} \circ P_*, \\ \text{where} \ P_* : \ C_p^\infty(B) \to \ C_p^\infty(E), \ f \mapsto f \circ P. \end{array} \end{array}$

Proposition 2.5

The tangent space $T_p(E, P, B)$ is a linear space homomorphic to $\mathbb{R}^{\dim(p)}$.

Application: dimension-varying control systems

Vector Fields Over Dimension-Free Manifolds

Definition 2.10

 \overline{X} is called a smooth vector field on Ω , denoted by $\overline{X} \in \mathfrak{X}(\Omega)$, if it satisfies the following conditions:

(i) At each point x̄ ∈ Ω, there exists p = μ dim(x̄), called the dimension of the vector field X̄ at x̄ and denoted by dim(X̄_{x̄}), such that X̄ assigns a p sub-lattice to the bundle of coordinate neighborhood at x̄, V_O^[p,·] = {O^p, O^{2p}, ···}, then at each leaf of this sub-lattice the vector field assigns a vector X^j ∈ T_{xjµ}(O^{jp}), j = 1, 2, ···.
(ii) {X^j | j = 1, 2, ···} satisfy consistence condition, that is,

$$X^j|_{x_j\otimes \mathbf{1}_j}=X^1\otimes \mathbf{1}_j, x_j\in O^{jp}, j=1,2,\cdots.$$

(iii) At each leaf $O^{jp} \subset \mathbb{R}^{j\mu \dim(\bar{x})}$,

$$\bar{X}|_{O^{jp}} \in \mathfrak{X}(O^{jp}).$$
(7)

Application: dimension-varying control systems 00000000000

Construction of Vector Fields

Algorithm 2.1

• Step 1: Assume there exists a smallest dimension m > 0, such that \bar{X} is defined over whole \mathbb{R}^m . That is,

$$\bar{X}|_{\mathbb{R}^m} := X \in \mathfrak{X}(\mathbb{R}^m).$$
(8)

From the constructing point of view: A vector field $X \in \mathfrak{X}(\mathbb{R}^m)$ is firstly given, such that the value of \overline{X} at leaf \mathbb{R}^m is uniquely determined by (8).

• Step 2: Extend X to $T_{\overline{y}}$. Assume $\dim(\overline{y}) = s$, denote $m \lor s = t$. Then $\dim(T_{\overline{y}}) = t$. Let $y \in \overline{y} \bigcap R^{[t,\cdot]}$, and $\dim(y) = kt$, $k = 1, 2, \cdots$. Define

$$\bar{X}(y) := \Pi_{kt}^m X(\Pi_m^{kt} y), \quad k = 1, 2, \cdots.$$
 (9)

Preliminaries

Application: dimension-varying control systems

An Example

Let $X = (x_1 + x_2, x_2^2)^T \in \mathfrak{X}(\mathbb{R}^2)$. Assume $\bar{X} \in \mathfrak{X}(\Omega)$ is generated by X. Consider $\bar{y} \in \Omega$, dim $(\bar{y}) = 3$, Denote $y_1 = (\xi_1, \xi_2, \xi_3)^T \in \mathbb{R}^3$. Since $2 \vee 3 = 6$, \bar{X} at $\bar{y} \cap \mathbb{R}^{6k} = \{y_2, y_4, y_6, \cdots\}$ is well defined. Now consider y_2 .

$$\bar{X}(y_2) = \Pi_6^2 X(\Pi_2^6(y_2)) = (I_2 \otimes \mathbf{1}_3) X\left(\frac{1}{3}(I_2 \otimes \mathbf{1}_3^T)(y_1 \otimes \mathbf{1}_2)\right)$$
$$= \begin{bmatrix} \frac{2}{3}(\xi_1 + \xi_2 + \xi_3) \\ \frac{2}{3}(\xi_1 + \xi_2 + \xi_3) \\ \frac{2}{3}(\xi_1 + \xi_2 + \xi_3) \\ \frac{1}{9}(\xi_2 + 2\xi_3)^2 \\ \frac{1}{9}(\xi_2 + 2\xi_3)^2 \\ \frac{1}{9}(\xi_2 + 2\xi_3)^2 \end{bmatrix}.$$

Consider y_4 , similar calculation shows that

$$\bar{X}(y_4) = \Pi_{12}^2 X(\Pi_2^{12}(y_4)) = \bar{X}(y_2) \otimes \mathbf{1}_2.$$

In fact, we have

$$\overline{X}(y_{2k}) = \overline{X}(y_2) \otimes \mathbf{1}_k, \quad k = 1, 2, \cdots$$

An Example (Cont'd)

Consider
$$X|_{\mathbb{R}^6}$$
:
Assume $z = (z_1, z_2, z_3, z_4, z_5, z_6)^T \in \mathbb{R}^6$. Then

$$X^{6} := \bar{X}_{z} = \Pi_{6}^{2} X(\Pi_{2}^{6} z) = \begin{bmatrix} \frac{\frac{1}{3}(z_{1} + z_{2} + z_{3} + z_{4} + z_{5} + z_{6}) \\ \frac{1}{3}(z_{1} + z_{2} + z_{3} + z_{4} + z_{5} + z_{6}) \\ \frac{1}{3}(z_{1} + z_{2} + z_{3} + z_{4} + z_{5} + z_{6}) \\ \frac{\frac{1}{9}(z_{4} + z_{5} + z_{6})^{2} \\ \frac{1}{9}(z_{4} + z_{5} + z_{6})^{2} \\ \frac{1}{9}(z_{4} + z_{5} + z_{6})^{2} \end{bmatrix}.$$
(10)

 $X^6 \in \mathfrak{X}(\mathbb{R}^6)$ is a standard vector field.

Application: dimension-varying control systems 00000000000

Generalizing DFES to Manifolds

We begin with constructing dimension-free manifolds as quotient spaces.

Definition 2.11

Given a Riemannian manifold M and an isometry $\varphi: M \to M$ over it, denote by $M^n := \underbrace{M \times \cdots \times M}_{n}$ the *n*-fold Cartesian product of M,

endowed with the product topology.

The dimension-free manifold generated by (M,φ) is defined as

$$\tilde{M} := M^{\infty} / \sim \tag{11}$$

where $M^\infty:=\bigsqcup_{n=1}^\infty M^n,$ and the equivalence relation over M^∞ is defined as

$$\forall s > 0, \ \forall k > 0, \ \forall (x_1, \cdots, x_s) \in M^s, \\ (x_1, \cdots, x_s) \sim (x_1, \cdots, x_s, \varphi(x_1), \cdots, \varphi(x_s), \cdots, \varphi^k(x_1), \cdots, \varphi^k(x_s)).$$

Application: dimension-varying control systems 00000000000

Vector Fields Over Dimension-Free Manifolds

Proposition 2.6

A vector field $f \in \mathfrak{X}(M^s)$ can be extended to \tilde{M} in the following way: assume $y \sim (x_1, \cdots, x_s)$, without loss of generality, let $y = (x_1, \cdots, x_s, \varphi(x_1), \cdots, \varphi(x_s), \cdots, \varphi^k(x_1), \cdots, \varphi^k(x_s))$, then the value of extended vector field \tilde{f} at y can be defined as:

$$\tilde{f}|_{y} := (f_{1}|_{x_{1}}, \cdots, f_{s}|_{x_{s}}, \varphi_{*}(f_{1}|_{x_{1}}), \cdots, \varphi_{*}(f_{s}|_{x_{s}}), \cdots, \varphi_{*}^{k}(f_{1}|_{x_{1}}), \cdots, \varphi_{*}^{k}(f_{s}|_{x_{s}})).$$

One can easily see that if we take the manifold M in Definition 12 as \mathbb{R} and let $\varphi := \mathrm{id}$, then the above definition coincides with our general form. Similarly, in the linear case, $\tilde{f}|_{x\otimes \mathbf{1}_k} := f|_x \otimes \mathbf{1}_k$.

Dimension-Varying Linear Systems

Consider a linear system over \mathbb{R}^n as

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{12}$$

where $u \in \mathbb{R}^m$. Using the projection we can construct a least square approximate system of (12) on \mathbb{R}^m , $\forall m \in \mathbb{N}$.

$$\Sigma_m: \ \dot{\xi}(t) = A_{\Pi}\xi(t) + \Pi_m^p Bu(t)$$

where

$$A_{\Pi} = \begin{cases} \Pi_m^n A(\Pi_m^n)^{\mathrm{T}} \left(\Pi_m^n (\Pi_m^n)^{\mathrm{T}} \right)^{-1} & n \ge m \\ \Pi_m^n A \left((\Pi_m^n)^{\mathrm{T}} \Pi_m^n \right)^{-1} (\Pi_m^n)^{\mathrm{T}} & n < m. \end{cases}$$
(13)

Hence we have defined a family of linear systems on \mathbb{R}^{∞} corresponding to the system Σ .

Preliminaries

Dimension-free manifolds

Application: dimension-varying control systems $0 \bullet 0000000000$

Projection Systems

Definition 3.1

Let

$$\dot{\bar{x}} = \bar{F}(\bar{x}), \quad \bar{x} \in \Omega.$$
 (14)

be a system on $\Omega.$ A dynamic system

$$\dot{x} = F(x), \quad x \in \mathbb{R}^n \subset \mathbb{R}^\infty,$$
(15)

is called a realization (or a lifting) of (14), if for each \bar{x} there exists $x \in \bar{x}$, such that the corresponding vector field $F(x) \in \bar{F}(\bar{x})$. Meanwhile, system (14) is called the projection system of (15).

Application: dimension-varying control systems oooooooooooooo

Lift and Projection of Control Systems

Definition 3.2

Consider control system

$$\Sigma^C: \ \dot{x} = F(x, u), \quad x \in \mathbb{R}^p, \ u \in \mathbb{R}^r.$$
(16)

 $u=u_1,\cdots,u_r$ can be considered as controlled parameters. Then its projection to R^q is

$$\Pi^p_q(\Sigma^C): \ \dot{z} = \tilde{F}(z, u), \quad z \in \mathbb{R}^q, \ u \in \mathbb{R}^r,$$
(17)

where

$$\tilde{F}(z,u) = \Pi_q^p F(\Pi_p^q(z), u).$$
(18)

Application: dimension-varying control systems $\texttt{OOO} \bullet \texttt{OOOOOOOO}$

Integral Curves

Definition 3.3

Let $\bar{X} \in \mathfrak{X}(\Omega)$. $\bar{x}(t, \bar{x}_0)$ is called the integral curve of \bar{X} with initial value \bar{x}_0 , denoted by $\bar{x}(t, \bar{x}_0) = \Phi_t^{\bar{X}}(\bar{x}_0)$, if for each initial value $x_0 \in \bar{x}_0 \bigcap \mathbb{R}^n$, and each generator of \bar{X} , denoted by $X = \bar{X}|_{\mathbb{R}^n}$, the following condition holds:

$$\Phi_t^{\bar{X}}(\bar{x}_0)|_{\mathbb{R}^n} = \overline{\Phi_t^X(x_0)}, \quad t \ge 0.$$
(19)

Integral Curves of Linear Vector Fields

Proposition 3.1

- Let $\bar{X} \in \mathfrak{X}(\Omega)$ be a linear vector field, and $\dim(\bar{X}) = m$. $X := \bar{X}|_{\mathbb{R}^m} = Ax$. Assume $\bar{x}^0 \in \Omega$, $\dim(\bar{x}^0) = s$.
 - (i) If s = m, then the integral curve of $\bar{X}|_{\mathbb{R}^m}$ is $\Phi_t^X(x_1^0) = e^{Xt}x_1^0$. Hence, the integral curve of $\bar{X}|_{\mathbb{R}^{rm}}$ becomes $\Phi_t^{X_r}(x_1^0) = [e^{Xt}x_1^0] \otimes \mathbf{1}_r$. The integral curve of \bar{X} with initial value \bar{x}^0 is $\overline{\Phi_t^X(x_1^0)} \subset \Omega$.
 - (ii) If s=km, then the integral curve of $\bar{X}|_{\mathbb{R}^{km}}$ is $\varPhi_t^{X_k}(x_1^0)=\mathrm{e}^{X_kt}x_1^0$, where

$$X_{k} := \bar{X}(y) = \Pi_{km}^{m}(X(\Pi_{m}^{km}(y))) = \Pi_{km}^{m}A\Pi_{m}^{km}y := A_{k}y, \ y \in \mathbb{R}^{km}.$$

. Hence the integral curve of \overline{X} with initial value \overline{x}^0 is $\overline{\Phi}_t^{X_k}(x_1^0) \subset \Omega$. (iii) If $m \lor s = p = km = rs$, then the integral curve of $\overline{X}|_{\mathbb{R}^p}$ is $\Phi_t^{X_k}(x_r^0) = \underbrace{\mathrm{e}^{X_kt}(x_1^0 \otimes I_s)}_{\overline{\Phi}_t^{X_k}(x_1^0 \otimes I_s)} \subset \Omega$.

Definition 3.4

Consider an affine nonlinear control system on $\Omega,$ described by

$$\begin{cases} \dot{\bar{x}}(t) = \bar{f}(x) + \sum_{i=1}^{m} \bar{g}_i(x) u^i, \\ \bar{y}_j(t) = \bar{h}_j(\bar{x}(t)), \quad j \in [1, p], \end{cases}$$
(20)

where $\dim(\overline{f}) = n_0$, $\dim(\overline{g}_i) = n_i$, $i \in [1, m]$, $\dim(\overline{h}_j) = r_j$, $j \in [1, p]$. Let $n = (\bigvee_{i=0}^m n_i) \bigvee (\bigvee_{j=1}^p r_j)$, then

$$\begin{cases} \dot{\bar{x}}(t) = f^n(x) \vec{+} \sum_{i=1}^m g_i^n(x) u_i, \\ y_j(t) = h_j^n(\bar{x}(t)), \quad j \in [1, p], \end{cases}$$
(21)

where $f^n = \overline{f}|_{\mathbb{R}^n}$, $g_i^n = \overline{g}_i|_{\mathbb{R}^n}$, $i \in [1, m]$, $h_j^n = \overline{g}_j|_{\mathbb{R}^n}$, $j \in [1, p]$. (21) is called the minimum realization of (20).

Application: dimension-varying control systems

An Example

Consider a linear control system $\overline{\Sigma}$ over Ω , which has its dynamic equation as Eq. (21), where \overline{f} has its smallest generator $f(x) = 2[x_1 + x_2, x_2]^T \in \mathfrak{X}(\mathbb{R}^2)$, m = 2, the smallest generator of \overline{g}_1 is $g_1 = [1, 0, 0, 1]^T \in \mathfrak{X}(\mathbb{R}^4)$, the smallest generator of \overline{g}_2 is $g_2 = [0, 1, 0, 0]^T \in \mathfrak{X}(\mathbb{R}^4)$. p = 1, $\overline{h}|_{\mathbb{R}^2} = x_2 - x_1$. Then, q = 4. We try to analyse the control properties concerning this system.

An Example (Cont'd)

$$\bar{f}_{\mathbb{R}^4} = \Pi_4^2 f \left(\Pi_2^4 [z_1, z_2, z_3, z_4]^{\mathrm{T}} \right)$$
$$= \begin{bmatrix} z_1 + z_2 + z_3 + z_4 \\ z_1 + z_2 + z_3 + z_4 \\ z_3 + z_4 \end{bmatrix} := Az,$$

where,

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

 $\bar{h}|_{\mathbb{R}^4} = h(\Pi_2^4 z) = h(z_1 + z_2, z_3 + z_4) = z_1 + z_2 - z_3 - z_4 := Cz,$ where C = [1, 1, -1, -1].

An Example (Cont'd)

Then the smallest generator of system $\bar{\Sigma}$, denoted by $\Sigma := \bar{\Sigma}|_{\mathbb{R}^4}$, is

$$\begin{cases} \dot{z} = Az + Bu, \\ y = Cz. \end{cases}$$

Then it is easy to calculate that the controllability matrix of Σ is

$$\mathcal{C} = \begin{bmatrix} 1 & 0 & 2 & 1 & 6 & 2 & 16 & 4 \\ 0 & 1 & 2 & 1 & 6 & 2 & 16 & 4 \\ 0 & 0 & 1 & 0 & 2 & 0 & 4 & 0 \\ 1 & 0 & 1 & 0 & 2 & 0 & 4 & 0 \end{bmatrix}$$

Since $\operatorname{rank}(\mathcal{C}) = 4$, Σ is completely controllable. By definition, $\overline{\Sigma}$ is completely controllable.

Dimension-free manifolds

Application: dimension-varying control systems 00000000000000

Conclusions and Outlook

Possible applications for DFEMs:

- Dimension-varying systems;
- Projection of high-dimensional systems;
- Synchronous multi-agent systems.

Application: dimension-varying control systems 0000000000000

References

- D. Cheng, From Dimension-Free Matrix Theory to Cross-Dimensional Dynamic Systems, Elsevier, UK, 2019.
- D. Cheng, On equivalence of matrices, *Asian Journal of Mathematics*, Vol. 23, No. 2, 257-348, 2019.
- D. Cheng, Z. Ji, From dimension-free manifolds to dimension-varying control systems, *Communications in Information and Systems*, Vol. 23, No. 1, 85-150, 2023.
- D. Cheng, Z. Ji, *Lectures on Semi-Tensor Product of Matrices, Vol.* 4: *Finite and Dimension-Free Systems*, Science Press, Beijing, 2023 (In Chinese).

Application: dimension-varying control systems 0000000000 \bullet

Thanks for your attention!