矩阵半张量积理论与应用研究中心第四期暑期研修班, 山东聊城

Stability Analysis and Feedback Stabilization of Probabilistic Logic Dynamical Systems

Guo Yuqian

School of Automation, Central South University

August 12, 2024

(□) (_□) (

Guo Yugian (Central South University) August 12, 2024 1 / 111

- **[Basic Concepts and Preliminaries](#page-1-0)**
	- **[Probabilistic Logic Dynamical Systems](#page-3-0)**
	- [Nonnegative Matrices](#page-28-0)
- **[Stability Analysis](#page-31-0)**
	- **•** [Definitions of Stability](#page-33-0)
	- **•** [Reachability-based Stability Analysis](#page-44-0)
	- **•** [Error-based Stability Analysis](#page-73-0)
- **[State Feedback Stabilization](#page-82-0)**
	- **•** [Finite-time Stabilization by State Feedback](#page-87-0)
	- [Asymptotical Stabilization by State Feedback](#page-100-0)
- **[Output Feedback Stabilization](#page-109-0)**
	- [Deterministic and Random Output Feedback](#page-111-0)
	- **[Stabilizability by Random Output Feedback](#page-122-0)**
	- **[Optimal Random Output Feedback](#page-133-0)**

(□) (_□) (

 Ω

[Basic Concepts and Preliminaries](#page-1-0)

- **[Probabilistic Logic Dynamical Systems](#page-3-0)**
- [Nonnegative Matrices](#page-28-0)
- **[Stability Analysis](#page-31-0)**
	- [Definitions of Stability](#page-33-0)
	- **[Reachability-based Stability Analysis](#page-44-0)**
	- **[Error-based Stability Analysis](#page-73-0)**
- **[State Feedback Stabilization](#page-82-0)**
	- **[Finite-time Stabilization by State Feedback](#page-87-0)**
	- [Asymptotical Stabilization by State Feedback](#page-100-0)
- **[Output Feedback Stabilization](#page-109-0)**
	- **[Deterministic and Random Output Feedback](#page-111-0)**
	- **[Stabilizability by Random Output Feedback](#page-122-0)**
	- **[Optimal Random Output Feedback](#page-133-0)**

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

 QQ

[Basic Concepts and Preliminaries](#page-1-0)

• [Probabilistic Logic Dynamical Systems](#page-3-0)

- [Nonnegative Matrices](#page-28-0)
- **[Stability Analysis](#page-31-0)**
	- [Definitions of Stability](#page-33-0)
	- **[Reachability-based Stability Analysis](#page-44-0)**
	- **[Error-based Stability Analysis](#page-73-0)**
- **[State Feedback Stabilization](#page-82-0)**
	- **[Finite-time Stabilization by State Feedback](#page-87-0)**
	- [Asymptotical Stabilization by State Feedback](#page-100-0)
- **[Output Feedback Stabilization](#page-109-0)**
	- **[Deterministic and Random Output Feedback](#page-111-0)**
	- **[Stabilizability by Random Output Feedback](#page-122-0)**
	- **[Optimal Random Output Feedback](#page-133-0)**

Notations

- \bullet \mathscr{D}_n : *n*-valued logic domain $\mathscr{D}_n = \{1, 2, \cdots, n\}$
- Δ_n : vector-form of logic domain \mathscr{D}_n , $\Delta_n = \text{Col}(I_n)$
- δ_n^j : vector-form of $j \in \mathscr{D}_n$, $\delta_n^j = \text{Col}_j(I_n)$
- \vec{x} : vector-form of logic variable $x \in \mathscr{D}_n$
- $\mathbf{R}_{[n]}$: power-reducing matrix

• A logic dynamical system (LDS) is a dynamical system evolves within the logic domain $\mathcal{D}_n := \{1, 2, \cdots, n\}.$

$$
x_{t+1} = f(x_t)
$$

 $\blacktriangleright x_t \in \mathscr{D}_n, f : \mathscr{D}_n \to \mathscr{D}_n$

Guo Yugian (Central South University) August 12, 2024 6 / 111

• A logic dynamical system (LDS) is a dynamical system evolves within the logic domain $\mathcal{D}_n := \{1, 2, \cdots, n\}.$

$$
x_{t+1} = f(x_t)
$$

 $\blacktriangleright x_t \in \mathscr{D}_n, f : \mathscr{D}_n \to \mathscr{D}_n$

- A Typical Example Boolean network: A special LDS proposed by Kauffman 1 as a qualitative model for GRNs.
	- \triangleright Even though a BN provides a rougher description of GRNs, it is still capable of efficiently predicting the long-term behavior of $\mathsf{GRNs}^2.$

² Gautier Stoll et al. "Continuous time boolean modeling for biological signaling: application of Gillespie algorithm". In: Bmc Systems Biology 6.1 (2012), pp. 116–116. 4 ロ } 4 4 9 } 4 \equiv } 4 \equiv }

Guo Yugian (Central South University) August 12, 2024 6 / 111

 Ω

An Example Boolean Network

 $f_A(B) = B$ $f_B(A, C) = A \wedge C$ $f_C(A) = \neg A$

Regulatory functions

An Example Boolean Network

 $f_A(B) = B$ $f_B(A, C) = A \wedge C$ $f_C(A) = \neg A$

 $\sqrt{ }$ \int \overline{a} $A_{t+1} = B_t$ $B_{t+1} = A_t \wedge C_t$ $C_{t+1} = \neg A_t$

Dynamical equation

Regulatory functions

 QQ イロト イ押ト イヨト イヨト

An Example Boolean Network

Regulatory functions

$$
\begin{cases} A_{t+1} = B_t \\ B_{t+1} = A_t \wedge C_t \\ C_{t+1} = \neg A_t \end{cases}
$$

Dynamical equation

Truth table

• A probabilistic logic dynamical system (PLDS) is a collection of LDSs driven by a random process

$$
x_{t+1} = f(w_t, x_t)
$$

 $\triangleright w_t \in \mathscr{D}_{n_w}$ is the **random disturbance** (i.i.d. process, Markov chain, or state-dependent process)

 \blacktriangleright f : $\mathscr{D}_n \times \mathscr{D}_n \rightarrow \mathscr{D}_n$

3 Ilya Shmulevich, Edward R Dougherty, and Wei Zhang. "From Boolean to probabilistic Boolean networks as models of genetic regulatory networks". In: Proceedings of the IEEE 90.[1](#page-10-0)1 (2002), $p p \Box 778 + 1792$ $p p \Box 778 + 1792$ $p p \Box 778 + 1792$. $4 \equiv x + 12$

Guo Yugian (Central South University) August 12, 2024 8 / 111

• A probabilistic logic dynamical system (PLDS) is a collection of LDSs driven by a random process

$$
x_{t+1} = f(w_t, x_t)
$$

- \triangleright $w_t \in \mathscr{D}_{n_{\text{max}}}$ is the **random disturbance** (i.i.d. process, Markov chain, or state-dependent process)
- \blacktriangleright f : $\mathscr{D}_{n_m} \times \mathscr{D}_n \rightarrow \mathscr{D}_n$
- A Typical Example Probabilistic Boolean Network (PBN): A stochastic generalization of deterministic BN, aiming to describe uncertainties and stochasticity in $\mathsf{GRNs^3}.$

3 Ilya Shmulevich, Edward R Dougherty, and Wei Zhang. "From Boolean to probabilistic Boolean networks as models of genetic regulatory networks". In: Proceedings of the IEEE 90.[1](#page-10-0)1 (2002), $p p \Box 778 + 1792$ $p p \Box 778 + 1792$ $p p \Box 778 + 1792$. $4 \equiv x + 12$

• A PBN is a randomly switched Boolean network

$$
\begin{cases}\nx_1(t+1) = f_1^{\sigma_1(t)}\left(\left\{x_j(t) \mid j \in \mathcal{N}_1^{\sigma_1(t)}\right\}\right) \\
x_2(t+1) = f_2^{\sigma_2(t)}\left(\left\{x_j(t) \mid j \in \mathcal{N}_2^{\sigma_2(t)}\right\}\right) \\
\vdots \\
x_n(t+1) = f_n^{\sigma_n(t)}\left(\left\{x_j(t) \mid j \in \mathcal{N}_n^{\sigma_n(t)}\right\}\right)\n\end{cases} \tag{1}
$$

$$
\blacktriangleright x_i \in \mathscr{B} := \{0,1\} \sim \mathscr{D}_2;
$$

 \blacktriangleright $\sigma_i(t) \in \mathscr{D}_{N_i}, i = 1, 2, \cdots, n$, are random switching sequences; and

- $\blacktriangleright \ \ f_i^j, \ i \in [1:n], \ j \in \mathscr{D}_{N_i},$ are Boolean functions of their respective in-neighbouring nodes $\left\{ x_{k}(t) \bigm| k \in \mathcal{N}_{i}^{j} \right\}$.
- \blacktriangleright There are $N:=\Pi_{i=1}^nN_i$ subnetworks in total.

 Ω

Algebraic Form of PLDS

$$
x_{t+1} = f(w_t, x_t)
$$

$$
\Downarrow
$$

$$
\Downarrow
$$

$$
\vec{x}_{t+1} = L_f \ltimes \vec{w}_t \ltimes \vec{x}_t
$$

$$
\star \vec{x}_t := \delta_n^{x_t}
$$
 and $\vec{w}_t := \delta_{n_w}^{w_t}$ are the vector-forms of x_t and w_t , respectively.

 \blacktriangleright $L_f \in \mathscr{L}_{n \times nn_w}$ is the structural matrix of logic function f, obtained from its truth table:

$$
\mathrm{Col}_{(w-1)n+j}(L_f) = \vec{f}(w,j) = \delta_n^{f(w,j)}, \quad w \in \mathscr{D}_{n_w}, j \in \mathscr{D}_{n_w}.
$$

Why Using Algebraic Form?

The STP and the vector-representation of logic

- \triangleright transform the logical calculations into algebraic calculations, and
- \blacktriangleright embed a LDS into the Euclidean space \mathbb{R}^n , enabling us to study LDSs using the structure of Euclidean space.

• I.i.d. Switching Case (Most studied case in literature)

\blacktriangleright Basic assumptions:

 \star w_t is an i.i.d. random sequence

$$
w_t \sim \boldsymbol{p}^w, \quad [\boldsymbol{p}^w]_j := \mathbb{P}\{w_t = j\}.
$$

★ For any t , w_t is independent of state history $\{x_s \mid s \leq t\}$.

 \blacktriangleright Markovian Property: x_t is a homogeneous Markov chain

 \star Transition probability matrix (TPM):

$$
\mathbf{P}=L_f\ltimes\pmb{p}^w
$$

$$
[\mathbf{P}]_{i,j} = \mathbb{P}\{x_{t+1} = i \mid x_t = j\}, \quad i,j \in \mathcal{D}_n
$$

Note: Conventionally, the TPM is defined as \mathbf{P}^{\top} .

 \star Dynamics of State PDV π_t : $x_t \sim \pi_t := \mathbb{E} \vec{x}_t \in \Upsilon_n$

$$
\boldsymbol{\pi}_{t+1} = \mathbf{P} \boldsymbol{\pi}_t
$$

State Transfer Graph (STG):

The STG of a PLS is a weighted directed graph $\mathcal{G} = (\mathcal{N}, \mathcal{E}, W)$ where

$$
\blacktriangleright \mathcal{N} = \mathscr{D}_n \text{ or } \Delta_n \text{ is the set of nodes;}
$$

- $\blacktriangleright \mathcal{E} = \{(j,i) \mid [\mathbf{P}]_{i,j} > 0\}$ is the set of directed edges;
- \blacktriangleright $W : \mathcal{E} \to (0, 1], (j, i) \mapsto [\mathbf{P}]_{i,j}$, is the weight of edge.

Lemma 2

For any $i, j \in \mathcal{D}_n$, the following statements are equivalent:

- $[\mathbf{P}^t]_{j,i}>0$ for some t with $1\le t\le n-1;$
- The STG (N, \mathcal{E}, W) has a path from i to j, denoted by $i \rightarrow j$.

Stationary Distribution and Its Convergence

If Stationary distribution: A distribution $\pi \in \Upsilon_n$ satisfying $\mathbf{P}\pi = \pi$.

- \star If π is a stationary distribution, then, $x_0 \sim \pi$ implies $x_t \sim \pi \; \forall t$
- \star A Finite Markov chain (Thus, a PLDS) has at least one stationary distribution.
- **Basic Limit Theorem:** Let x_t be an irreducible, aperiodic Markov chain having a stationary distribution π . Then

$$
\lim_{t\to\infty} \boldsymbol{\pi}_t = \lim_{t\to\infty} \mathbf{P}^t \boldsymbol{\pi}_0 = \boldsymbol{\pi} \quad \forall \boldsymbol{\pi}_0 \in \boldsymbol{\Upsilon}_n.
$$

Note: Please notice the difference between the convergence of stationary distribution and the (set) stability discussed later.

 QQ

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Fixed Point and Invariant Set (Closed Set)

► A subset $C \subset \mathcal{D}_n$ is called an **invariant subset** if

$$
\mathbb{P}\left\{x_{t+1}\in\mathcal{C}\,\big|\,x_t\in\mathcal{C}\right\}=1.
$$

A state x_e is called a **fixed point** if $\{x_e\}$ is invariant.

Fixed Point and Invariant Set (Closed Set)

A subset $C \subset \mathcal{D}_n$ is called an **invariant subset** if

$$
\mathbb{P}\left\{x_{t+1}\in\mathcal{C}\,\,\big|\,\,x_t\in\mathcal{C}\right\}=1.
$$

A state x_e is called a **fixed point** if $\{x_e\}$ is invariant.

Lemma 3

The transition probability from any state to an invariant subset C is nondecreasing with time, that is, for any $k \in \mathbb{Z}_+$ and any $j \in \mathscr{D}_n$,

$$
\mathbb{P}\{x_{t+k} \in \mathcal{C} \mid x_0 = j\} \ge \mathbb{P}\{x_t \in \mathcal{C} \mid x_0 = j\}
$$

 Ω

イロト イ母 ト イヨ ト イヨ)

The Largest Invariant Subset

- \blacktriangleright The union of two invariant subsets is still invariant.
- \triangleright The union of all invariant subsets contained in M is referred to as the largest invariant subset in M, denoted by $I(M)$.

Proposition 1

For a given subset $M \subseteq \mathscr{D}_n$, we define a sequence of subsets as^a

$$
\mathcal{M}_s = \left\{ j \in \mathcal{M}_{s-1} \ \middle| \ \sum_{i \in \mathcal{M}_{s-1}} [\mathbf{P}]_{i,j} = 1 \right\}, \quad s = 1, 2, \cdots,
$$

where $M_0 := M$. Then, there must exist an integer $k \leq |M|$ such that $M_{\mathbf{k}} = \mathcal{M}_{\mathbf{k}-1}$. In addition, it holds that $I(\mathcal{M}) = \mathcal{M}_{\mathbf{k}}$.

aYuqian Guo et al. "Stability and Set Stability in Distribution of Probabilistic Boolean Networks". In: IEEE Transactions on Automatic Control 64 (2 2019), pp. 736–742.

Probabilistic Logic Dynamical Control Systems (PLDCS)

$$
\begin{cases}\nx_{t+1} = f(w_t, u_t, x_t) \\
y_t = h(v_t, x_t)\n\end{cases}
$$

 $\hat{\mathbb{I}}$

÷,

ヨメ メヨメ

∢ ロ ▶ - ∢ 何 ▶ - ∢

 QQ

\n- $$
\triangleright
$$
 $x_t \in \mathcal{D}_n$, $u_t \in \mathcal{D}_m$, $y_t \in \mathcal{D}_q$
\n- \triangleright $f : \mathcal{D}_{n_w} \times \mathcal{D}_m \times \mathcal{D}_n \to \mathcal{D}_n$; $h : \mathcal{D}_{n_v} \times \mathcal{D}_n \to \mathcal{D}_q$
\n- \triangleright $w_t \sim p^w$
\n

$$
\begin{cases}\n\vec{x}_{t+1} = L_f \times \vec{w}_t \times \vec{u}_t \times \vec{x}_t \\
\vec{y}_t = L_h \times \vec{v}_t \times \vec{x}_t\n\end{cases}
$$
\n
$$
\triangleright \quad L_f \in \mathscr{L}_{n \times n_w mn}, \ L_h \in \mathscr{L}_{q \times n_v n}
$$

• Basic assumptions:

 \triangleright w_t and v_t are i.i.d. random sequences that are mutually independent.

$$
w_t \sim \boldsymbol{p}^w, \quad v_t \sim \boldsymbol{p}^v.
$$

► For any t , w_t and v_t are independent of state history $\{x_s \mid s \leq t\}$. TPMs

$$
\mathbf{P} = L_f \ltimes \mathbf{p}^w
$$

$$
\mathbf{P}_j = L_f \ltimes \mathbf{p}^w \ltimes \delta_m^j
$$

 QQ

 $A \Box B$ A

Guo Yugian (Central South University) August 12, 2024 19 / 111

• Reachability

 \triangleright x_d is said to be k-step reachable from x_0 if there is a control sequence $\mathbf{u} = \{u(t)\}\$ such that

$$
\mathbb{P}\{x(k;x_0,\mathbf{u})=x_d\}>0.
$$

 x_d is said to be reachable from x_0 , denoted by $x_0\stackrel{u}{\rightarrow}x_d$, if there is a control sequence $\mathbf{u} = \{u(t)\}\$ such that

$$
\mathbb{P}\{x(t;x_0,\mathbf{u})=x_d \text{ for some } t\geq 1\}>0.
$$

 \triangleright x_d is reachable from x_0 if and only if x_d is k-step reachable from x_0 for some $k \leq 2^n - 1$.

 Ω

イロト イ部 トイモ トイモト

• Reachability Matrix

$$
\mathbf{R} = \sum_{k=1}^{n-1} \left(\mathbf{P} \ltimes \mathbf{1}_m \right)^k
$$

Proposition 2

 $i \stackrel{u}{\rightarrow} j$ iff $[\mathbf{R}]_{j,i} > 0$.

Sketchy Proof:

$$
\begin{array}{rcl}\n(\mathbf{P} \ltimes \mathbf{1}_m)^k & = & (\mathbf{P}_1 + \mathbf{P}_2 + \dots + \mathbf{P}_m)^k \\
 & = & \sum_{\text{all possible combinations}} \mathbf{P}_{i_k} \cdots \mathbf{P}_{i_2} \mathbf{P}_{i_1} \\
 & \left[(\mathbf{P} \ltimes \mathbf{1}_m)^k \right]_{j,i} > 0 \text{ if and only if } j \text{ is } k\text{-step reachable from } i.\n\end{array}
$$

Thus,

Control Invariant Subsets

A subset $C \subseteq \mathscr{D}_n$ is termed as a control invariant subset if, for any state $j \in \mathcal{C}$, there exists a control $r \in \mathscr{D}_m$ such that

$$
\mathbb{P}\{x_{t+1} \in \mathcal{C} \mid x_t = j, u_t = r\} = 1.
$$
 (2)

- \triangleright The union of any two control invariant subsets is still control invariant.
- \triangleright The union of all control invariant subsets contained in a given subset $M \subseteq \mathscr{D}_n$ is termed as the **largest control invariant subset** contained in M and is denoted by $I_c(\mathcal{M})$.
- If $C = \{x_e\}$ is control invariant, then, x_e is called a control fixed point.

 Ω

イロト イ母 ト イヨ ト イヨ)

Proposition 3

Suppose that $\mathcal{M}_0 \subseteq \mathscr{D}_n.$ A sequence of subsets $\mathcal{M}_s, s \in \mathbb{Z}^+$, is defined as

$$
\mathcal{M}_s = \left\{ j \in \mathcal{M}_{s-1} \Big| \exists k \in [1:m], \text{s.t.} \sum_{i \in \mathcal{M}_{s-1}} [\mathbf{P}_k]_{i,j} = 1 \right\}.
$$

Then, there must exist a positive integer $\eta \leq \vert \mathcal{M}_0 \vert$ such that $\mathcal{M}_\eta = \mathcal{M}_{\eta+1}$. Additionally, $I_c(\mathcal{M}_0) = \mathcal{M}_n$ holds.

- **[Basic Concepts and Preliminaries](#page-1-0)**
	- **[Probabilistic Logic Dynamical Systems](#page-3-0)**
	- [Nonnegative Matrices](#page-28-0)
- **[Stability Analysis](#page-31-0)**
	- **[Definitions of Stability](#page-33-0)**
	- **[Reachability-based Stability Analysis](#page-44-0)**
	- **[Error-based Stability Analysis](#page-73-0)**
- **[State Feedback Stabilization](#page-82-0)**
	- **[Finite-time Stabilization by State Feedback](#page-87-0)**
	- [Asymptotical Stabilization by State Feedback](#page-100-0)
- **[Output Feedback Stabilization](#page-109-0)**
	- **[Deterministic and Random Output Feedback](#page-111-0)**
	- **[Stabilizability by Random Output Feedback](#page-122-0)**
	- **[Optimal Random Output Feedback](#page-133-0)**

• Nonnegative Matrices: A matrix A is called a nonnegative matrix, denoted as $A \succeq 0$, if it is nonnegative element-wise, that is, all of its elements are nonnegative.

Definition 4

Consider two $m \times q$ nonnegative matrices $\Gamma_1 \succeq 0$ and $\Gamma_2 \succeq 0$.

- Γ_1 is said to be structurally included in Γ_2 , denoted as $\Gamma_1 \sqsubseteq \Gamma_2$, if for any $i \in [1:m]$ and any $j \in [1:q]$, $[\Gamma_2]_{i,j} = 0$ implies $[\Gamma_1]_{i,j} = 0$.
- **•** They are said to be homo-structural, denoted as $\Gamma_1 \sim_h \Gamma_2$, if both $\Gamma_1 \sqsubset \Gamma_2$ and $\Gamma_2 \sqsubset \Gamma_1$ hold.

 QQ

 $A \Box B$ A

Lemma 5

Consider $m \times n$ nonnegative matrices $A, B \succeq 0$ and $p \times q$ nonnegative matrices $C, D \succeq 0$. If $A \sqsubseteq B$ and $C \sqsubseteq D$, then it holds that

 $A \ltimes C \sqsubseteq B \ltimes D$.

- **[Basic Concepts and Preliminaries](#page-1-0)**
	- **[Probabilistic Logic Dynamical Systems](#page-3-0)**
	- [Nonnegative Matrices](#page-28-0)
- **[Stability Analysis](#page-31-0)**
	- **•** [Definitions of Stability](#page-33-0)
	- **•** [Reachability-based Stability Analysis](#page-44-0)
	- **•** [Error-based Stability Analysis](#page-73-0)
- **[State Feedback Stabilization](#page-82-0)**
	- **•** [Finite-time Stabilization by State Feedback](#page-87-0)
	- [Asymptotical Stabilization by State Feedback](#page-100-0)
- **[Output Feedback Stabilization](#page-109-0)**
	- [Deterministic and Random Output Feedback](#page-111-0)
	- **[Stabilizability by Random Output Feedback](#page-122-0)**
	- **[Optimal Random Output Feedback](#page-133-0)**

ミドマミ

∢ □ ▶ ◀ [□] ▶ ◀

 Ω

- **[Basic Concepts and Preliminaries](#page-1-0) • [Probabilistic Logic Dynamical Systems](#page-3-0)**
	- [Nonnegative Matrices](#page-28-0)

[Stability Analysis](#page-31-0)

- [Definitions of Stability](#page-33-0)
- **[Reachability-based Stability Analysis](#page-44-0)**
- **[Error-based Stability Analysis](#page-73-0)**
- **[State Feedback Stabilization](#page-82-0)**
	- **[Finite-time Stabilization by State Feedback](#page-87-0)**
	- [Asymptotical Stabilization by State Feedback](#page-100-0)
- **[Output Feedback Stabilization](#page-109-0)**
	- **[Deterministic and Random Output Feedback](#page-111-0)**
	- **[Stabilizability by Random Output Feedback](#page-122-0)**
	- **[Optimal Random Output Feedback](#page-133-0)**

イロト イ母 ト イヨ ト イヨ)

 QQ

- **[Basic Concepts and Preliminaries](#page-1-0) • [Probabilistic Logic Dynamical Systems](#page-3-0)** • [Nonnegative Matrices](#page-28-0) **[Stability Analysis](#page-31-0) •** [Definitions of Stability](#page-33-0) **• [Reachability-based Stability Analysis](#page-44-0) • [Error-based Stability Analysis](#page-73-0) [State Feedback Stabilization](#page-82-0) • [Finite-time Stabilization by State Feedback](#page-87-0)** [Asymptotical Stabilization by State Feedback](#page-100-0) **[Output Feedback Stabilization](#page-109-0) • [Deterministic and Random Output Feedback](#page-111-0) • [Stabilizability by Random Output Feedback](#page-122-0)**
	- **[Optimal Random Output Feedback](#page-133-0)**

イロト イ母 ト イヨ ト イヨ)

 QQ

2.1 Definitions of Stability

Consider PLDS

$$
x_{t+1} = f(w_t, x_t)
$$

$$
\begin{aligned}\n&\bullet \ x_t \in \mathscr{D}_n, \ w_t \sim \boldsymbol{p}^w \in \Upsilon_{n_w} \\
&\bullet \ f: \mathscr{D}_{n_w} \times \mathscr{D}_n \to \mathscr{D}_n\n\end{aligned}
$$

Definition 6 (Finite-time Stability(FTS))

A state $x_e \in \mathscr{D}_n$ is said to be finite-time stable if there is a positive integer T such that^a

$$
\mathbb{P}\{x_t = x_e \mid x_0 = j\} = 1 \quad \forall t \ge T, \forall j \in \mathscr{D}_n.
$$

イロト イ母 ト イヨ ト イヨ)

 Ω

aRui Li, Meng Yang, and Tianguang Chu. "State feedback stabilization for probabilistic Boolean networks". In: Automatica 50.4 (2014), pp. 1272–1278.

2.1 Definitions of Stability

Definition 7 (Stability with Probability One (SPO))

A state $x_e \in \mathscr{D}_n$ is said to be stable with probability one if^a

$$
\mathbb{P}\left\{\lim_{t\to\infty}x_t = x_e \mid x_0 = j\right\} = 1 \quad \forall j \in \mathscr{D}_n.
$$

^aYin Zhao and Daizhan Cheng. "On controllability and stabilizability of probabilistic Boolean control networks". In: Science China Information Sciences 57.1 (2014), pp. 1–14.

Definition 7 (Stability with Probability One (SPO))

A state $x_e \in \mathscr{D}_n$ is said to be stable with probability one if^a

$$
\mathbb{P}\left\{\lim_{t\to\infty}x_t = x_e \mid x_0 = j\right\} = 1 \quad \forall j \in \mathscr{D}_n.
$$

^aYin Zhao and Daizhan Cheng. "On controllability and stabilizability of probabilistic Boolean control networks". In: Science China Information Sciences 57.1 (2014), pp. 1–14.

Definition 8 (Stability in Stochastic Sense (SSS))

A state $x_e \in \mathscr{D}_n$ is said to be stable in stochastic sense if^a

$$
\lim_{t \to \infty} \mathbb{E}[\vec{x}_t \mid x_0 = j] = \vec{x}_e \quad \forall j \in \mathcal{D}_n.
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 Ω

^aMin Meng, Lu Liu, and Gang Feng. "Stability and l_1 gain analysis of Boolean networks with Markovian jump parameters". In: IEEE Transactions on Automatic Control 62.8 (2017), pp. 4222–4228.

Definition 9 (Stability in Distribution (SD))

A state $x_e \in \mathscr{D}_n$ is said to be stable in distribution if^a

$$
\lim_{t \to \infty} \mathbb{P}\left\{x_t = x_e \mid x_0 = j\right\} = 1 \quad \forall j \in \mathcal{D}_n.
$$

^aYuqian Guo et al. "Stability and Set Stability in Distribution of Probabilistic Boolean Networks". In: IEEE Transactions on Automatic Control 64 (2 2019), pp. 736–742.

Definition 9 (Stability in Distribution (SD))

A state $x_e \in \mathscr{D}_n$ is said to be stable in distribution if^a

$$
\lim_{t \to \infty} \mathbb{P}\left\{x_t = x_e \mid x_0 = j\right\} = 1 \quad \forall j \in \mathcal{D}_n.
$$

aYugian Guo et al. "Stability and Set Stability in Distribution of Probabilistic Boolean Networks". In: IEEE Transactions on Automatic Control 64 (2 2019), pp. 736–742.

Relationship between different stabilities

- FTS and SD can be easily generalized to set stability.
- **•** However, such generalizations of SPO and SSS are not convenient, because theyour require the existences of the limits $\lim_{t\to\infty} x_t$ and $\lim_{t\to\infty} \mathbb{E} x_t$, respectivel イロト イ部 トイモ トイモト Ω

Definition 10 (Finite-time Set Stability)

A subset $\mathcal{M} \subset \mathscr{D}_n$ is said to be finite-time stable if there is a positive integer T such that^a

$$
\mathbb{P}\{x_t \in \mathcal{M} \mid x_0 = j\} = 1 \quad \forall t \ge T, \forall j \in \mathscr{D}_n.
$$

^aLi Rui, Yang Meng, and Chu Tianguang. "概率布尔网络的集合镇定控制". In: 系统科学与数学 36.3 (2016), pp. 371–380.

Definition 11 (Set Stability in Distribution (SSD))

A subset $\mathcal{M} \subset \mathscr{D}_n$ is said to be stable in distribution if^a

$$
\lim_{t \to \infty} \mathbb{P}\left\{x_t \in \mathcal{M} \mid x_0 = j\right\} = 1 \quad \forall j \in \mathcal{D}_n.
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 Ω

^aYuqian Guo et al. "Stability and Set Stability in Distribution of Probabilistic Boolean Networks". In: IEEE Transactions on Automatic Control 64 (2 2019), pp. 736–742.

o The limitations

 $\lim_{t\to\infty} x(t)$, $\lim_{t\to\infty} \mathbb{E}\vec{x}(t)$

do not exist;

• However, for any x_0 ,

 $\lim_{t \to \infty} \mathbb{P} \left\{ x(t) \in \mathcal{M} \mid x(0) = x_0 \right\} = 1$

 ${\bf P} =$ \lceil 0 1 0 0.5 1 0 0 0.2 0 0 0 0.3 0 0 1 0 1 $M = \{1, 2\}$

• Typical Set Stability Problem: Synchronization of networks

Consider two *n*-valued PLDSs

$$
x_{t+1} = f(w_t, x_t), \quad z_{t+1} = g(v_t, z_t, x_t)
$$

$$
x_t, z_t \in \mathcal{D}_n
$$

Finite-time synchronization: There exists a $T > 0$ such that

$$
\mathbb{P}\{x_t = z_t \mid x_0 = j, z_0 = i\} = 1 \quad \forall t \ge T, \forall j, i \in \mathcal{D}_n.
$$

 \blacktriangleright Asymptotical synchronization:

$$
\lim_{t \to \infty} \mathbb{P}\left\{x_t = z_t \mid x_0 = j, z_0 = i\right\} = 1 \quad \forall j, i \in \mathcal{D}_n
$$

.

The synchronization problem is equivalent to the stability of the combined system

$$
\begin{cases}\nx_{t+1} = f(w_t, x_t) \\
z_{t+1} = g(v_t, z_t, x_t)\n\end{cases}
$$

with respect to the synchronization set

$$
\mathcal{M} := \{ (j, j) \mid j \in \mathscr{D}_n \} \subset \mathscr{D}_n \times \mathscr{D}_n
$$

∢ ロ ▶ ィ 何 ▶ ィ

Outline

- **[Basic Concepts and Preliminaries](#page-1-0) • [Probabilistic Logic Dynamical Systems](#page-3-0)** • [Nonnegative Matrices](#page-28-0) **[Stability Analysis](#page-31-0)** • [Definitions of Stability](#page-33-0) **• [Reachability-based Stability Analysis](#page-44-0) • [Error-based Stability Analysis](#page-73-0) [State Feedback Stabilization](#page-82-0) • [Finite-time Stabilization by State Feedback](#page-87-0)** [Asymptotical Stabilization by State Feedback](#page-100-0) **[Output Feedback Stabilization](#page-109-0) • [Deterministic and Random Output Feedback](#page-111-0) • [Stabilizability by Random Output Feedback](#page-122-0)**
	- **[Optimal Random Output Feedback](#page-133-0)**

イロト イ母 ト イヨ ト イヨ)

 QQ

Theorem 12

A PBN is finite-time stable with respect to x_e if and only if

$$
\text{Col}\left\{\mathbf{P}^{n-1}\right\} = \left\{\vec{x}_e\right\}, \quad (\text{where } \mathbf{P} = L_f \ltimes \mathbf{p}^w) \tag{3}
$$

Sketchy Proof: (Necessity) FT stability

Theorem 12

A PBN is finite-time stable with respect to x_e if and only if

$$
\text{Col}\left\{\mathbf{P}^{n-1}\right\} = \left\{\vec{x}_e\right\}, \quad (\text{where } \mathbf{P} = L_f \ltimes \mathbf{p}^w) \tag{3}
$$

Sketchy Proof: (Necessity) FT stability $\Rightarrow x_e$ is a fixed point, and the solution from any initial state reaches x_e within $n - 1$ steps.

Theorem 12

A PBN is finite-time stable with respect to x_e if and only if

$$
\text{Col}\left\{\mathbf{P}^{n-1}\right\} = \left\{\vec{x}_e\right\}, \quad (\text{where } \mathbf{P} = L_f \ltimes \mathbf{p}^w) \tag{3}
$$

Sketchy Proof: (Necessity) FT stability $\Rightarrow x_e$ is a fixed point, and the solution from any initial state reaches x_e within $n - 1$ steps. \Rightarrow [\(3\)](#page-45-0)

Theorem 12

A PBN is finite-time stable with respect to x_e if and only if

$$
\text{Col}\left\{\mathbf{P}^{n-1}\right\} = \left\{\vec{x}_e\right\}, \quad (\text{where } \mathbf{P} = L_f \ltimes \mathbf{p}^w) \tag{3}
$$

Sketchy Proof: (Necessity) FT stability $\Rightarrow x_e$ is a fixed point, and the solution from any initial state reaches x_e within $n - 1$ steps. \Rightarrow [\(3\)](#page-45-0) (Sufficiency) [\(3\)](#page-45-0) \Rightarrow

$$
\mathbf{P}\vec{x}_e = \mathbf{P}^n \vec{x}_0 = \mathbf{P}^{n-1}(\mathbf{P}\vec{x}_0) = [\vec{x}_e, \cdots, \vec{x}_e](\mathbf{P}\vec{x}_0) = \vec{x}_e
$$

Theorem 12

A PBN is finite-time stable with respect to x_e if and only if

$$
\text{Col}\left\{\mathbf{P}^{n-1}\right\} = \left\{\vec{x}_e\right\}, \quad (\text{where } \mathbf{P} = L_f \ltimes \mathbf{p}^w) \tag{3}
$$

Sketchy Proof: (Necessity) FT stability $\Rightarrow x_e$ is a fixed point, and the solution from any initial state reaches x_e within $n - 1$ steps. \Rightarrow [\(3\)](#page-45-0) (Sufficiency) [\(3\)](#page-45-0) \Rightarrow

$$
\mathbf{P}\vec{x}_e = \mathbf{P}^n \vec{x}_0 = \mathbf{P}^{n-1}(\mathbf{P}\vec{x}_0) = [\vec{x}_e, \cdots, \vec{x}_e](\mathbf{P}\vec{x}_0) = \vec{x}_e
$$

 $\Rightarrow x_e$ is a fixed point

イロト イ部 トイモ トイモト 299

Theorem 12

A PBN is finite-time stable with respect to x_e if and only if

$$
\text{Col}\left\{\mathbf{P}^{n-1}\right\} = \left\{\vec{x}_e\right\}, \quad (\text{where } \mathbf{P} = L_f \ltimes \mathbf{p}^w) \tag{3}
$$

Sketchy Proof: (Necessity) FT stability $\Rightarrow x_e$ is a fixed point, and the solution from any initial state reaches x_e within $n - 1$ steps. \Rightarrow [\(3\)](#page-45-0) (Sufficiency) [\(3\)](#page-45-0) \Rightarrow

$$
\mathbf{P}\vec{x}_e = \mathbf{P}^n \vec{x}_0 = \mathbf{P}^{n-1}(\mathbf{P}\vec{x}_0) = [\vec{x}_e, \cdots, \vec{x}_e](\mathbf{P}\vec{x}_0) = \vec{x}_e
$$

 $\Rightarrow x_e$ is a fixed point \Rightarrow For any $t > n$, any $j \in \mathscr{D}_n$,

$$
\mathbb{P}\{x_t = x_e \mid x_0 = j\} \ge \mathbb{P}\{x(n-1) = x_e \mid x_0 = j\} = 1
$$

Theorem 12

A PBN is finite-time stable with respect to x_e if and only if

$$
\text{Col}\left\{\mathbf{P}^{n-1}\right\} = \left\{\vec{x}_e\right\}, \quad (\text{where } \mathbf{P} = L_f \ltimes \mathbf{p}^w) \tag{3}
$$

Sketchy Proof: (Necessity) FT stability $\Rightarrow x_e$ is a fixed point, and the solution from any initial state reaches x_e within $n - 1$ steps. \Rightarrow [\(3\)](#page-45-0) (Sufficiency) [\(3\)](#page-45-0) \Rightarrow

$$
\mathbf{P}\vec{x}_e = \mathbf{P}^n \vec{x}_0 = \mathbf{P}^{n-1}(\mathbf{P}\vec{x}_0) = [\vec{x}_e, \cdots, \vec{x}_e](\mathbf{P}\vec{x}_0) = \vec{x}_e
$$

 $\Rightarrow x_e$ is a fixed point \Rightarrow For any $t > n$, any $j \in \mathscr{D}_n$,

$$
\mathbb{P}\{x_t = x_e \mid x_0 = j\} \ge \mathbb{P}\{x(n-1) = x_e \mid x_0 = j\} = 1
$$

 \Rightarrow FT stability

• Criterion of FT Stability in terms of STG⁴

⁴Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. "Finite-time Stability of Probabilistic Logical Networks: A Topological Sorting Approach". In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020), pp. 695–699. イロト イ部 トイモ トイモト

• Criterion of FT Stability in terms of STG⁴

$$
\mathbb{P}\{x_t = x_e \mid x_0 = j\} = 1 \quad \forall t \ge T, \forall j \in \mathscr{D}_n.
$$

⁴Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. "Finite-time Stability of Probabilistic Logical Networks: A Topological Sorting Approach". In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020), pp. 695–699. イロト イ部 トイモ トイモト

• Criterion of FT Stability in terms of STG⁴

$$
\mathbb{P}\{x_t = x_e \mid x_0 = j\} = 1 \quad \forall t \ge T, \forall j \in \mathscr{D}_n.
$$

 $\mathbb{\hat{I}}$

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ (i) x_e is a fixed point (ii) $x_0 \to x_e$ $\forall x_0$ (iii) Any path from any x_0 to x_e in $\mathcal{G} \setminus (x_e, x_e)$ is with finite length

⁴Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. "Finite-time Stability of Probabilistic Logical Networks: A Topological Sorting Approach". In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020), pp. 695–699. 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

• Criterion of FT Stability in terms of STG⁴

$$
\mathbb{P}\{x_t = x_e \mid x_0 = j\} = 1 \quad \forall t \ge T, \forall j \in \mathscr{D}_n.
$$

 $\mathbb{\hat{I}}$

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ (i) x_e is a fixed point (ii) $x_0 \to x_e$ $\forall x_0$ (iii) Any path from any x_0 to x_e in $\mathcal{G} \setminus (x_e, x_e)$ is with finite length

> $\mathbb{\hat{I}}$ $\mathcal{G} \setminus (x_e, x_e)$ is acyclic

• Note: $G \setminus (x_e, x_e)$ is the graph obtained from the STG G of the PLDS by removing the self-loop of x_e

 Ω

⁴Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. "Finite-time Stability of Probabilistic Logical Networks: A Topological Sorting Approach". In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020), pp. 695–699. $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Theorem 13

A PBN is finite-time stable with respect to x_e if and only if $\mathcal{G} \setminus (x_e, x_e)$ is acyclic^a.

aShiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. "Finite-time Stability of Probabilistic Logical Networks: A Topological Sorting Approach". In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020), pp. 695–699.

Finite-time Set Stability

Finite-time stability w.r.t. M

⇔ Finite-time stability w.r.t. the largest invariant subset $I(\mathcal{M})$ in \mathcal{M}

 $\Leftrightarrow I(\mathcal{M}) \neq \emptyset$ and the STG has no cycles outside $I(\mathcal{M})$.

An asymptotically stable PLDS that is not FT stable

4 0 8

- ← 冊 →

An asymptotically stable PLDS that is not FT stable

$$
\mathbf{P} = \begin{bmatrix} 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0.5 & 0 \\ 0.2 & 0 & 0 & 0 \\ 0.8 & 1 & 0 & 1 \end{bmatrix}
$$

$$
\lim_{t \to \infty} \mathbb{P} \{x_t = 4 \mid x_0 = j\}
$$

$$
= \lim_{t \to \infty} [\mathbf{P}^t]_{4,j} = 1 \quad \forall j
$$

4 0 8

- ← 冊 →

Criterion of Stability with Probability One

$$
\mathbb{P}\left\{\lim_{t\to\infty} x_t = x_e \mid x_0 = j\right\} = 1 \quad \forall j \in \mathscr{D}_n.
$$

$$
\updownarrow
$$

$$
\downarrow
$$

$$
\downarrow
$$

$$
x_e \text{ is a fixed point. (Thus, it is recurrent)}
$$

$$
x_0 \to x_e \quad \forall x_0.
$$

Theorem 14

A PLDS is asymptotically stable w.r.t. $x_e = i$ with probability one if and only if x_e is a fixed point and^a

$$
\text{Row}_i\left(\mathbf{P}^{n-1}\right) \succ 0\tag{4}
$$

◂▭

aYin Zhao and Daizhan Cheng. "On controllability and stabilizability of probabilistic Boolean control networks". In: Science China Information Sciences 57.1 (2014), pp. 1–14.

Criterion of asymptotical stability in distribution

Theorem 15

A PLDS is asymptotically stable w.r.t. x_e in distribution if and only if

 $\int x_e$ is a fixed point. $x_0 \rightarrow x_e \quad \forall x_0.$

Or, equivalently, x_e is a fixed point and $\text{Row}_i\left(\mathbf{P}^{n-1}\right) \succ 0$.

^aYuqian Guo et al. "Stability and Set Stability in Distribution of Probabilistic Boolean Networks". In: IEEE Transactions on Automatic Control 64 (2 2019), pp. 736–742.

イロト イ部 トイヨ トイヨト

 Ω

Sketchy Proof of Sufficiency.

$$
\lim_{t \to \infty} \mathbb{P} \{ x_t = x_e \mid x_0 = j \} = 1 \quad \forall j \in \mathcal{D}_n.
$$
\n
$$
\Downarrow
$$
\n
$$
\lim_{t \to \infty} \mathbf{P}^t = \begin{bmatrix} 0_{(n-1)\times n} \\ \mathbf{1}_n^\top \end{bmatrix} \quad \text{(Assume } x_e = n)
$$
\n
$$
\Downarrow
$$
\n
$$
\lim_{t \to \infty} \alpha_t = \mathbf{1}_{n-1}, \quad \text{where } \quad \mathbf{P}^t := \begin{bmatrix} \mathbf{\Gamma}_t^\top & 0_{(n-1)\times 1} \\ \alpha_t^\top & 1 \end{bmatrix}.
$$
\n
$$
\Downarrow
$$
\n
$$
\lim_{t \to \infty} (\underbrace{\alpha_{nt} - \mathbf{1}_{n-1}}_{\eta_t}) = 0 \quad \text{(By Monotonicity)}
$$

Þ

ミドマミド

K ロ ▶ K 伊 ▶ K

 299

$$
\mathbf{P}(n(t+1)) = \mathbf{P}(nt)\mathbf{P}(n)
$$

$$
\Downarrow
$$

$$
\alpha_{n(t+1)} = \Gamma_n \alpha_{nt} + \alpha_n
$$

$$
\Downarrow
$$

$$
\alpha_{n(t+1)} - \mathbf{1}_{n-1} = \Gamma_n(\alpha_{nt} - \mathbf{1}_{n-1}) + \underbrace{\Gamma_n \mathbf{1}_{n-1} + \alpha_n - \mathbf{1}_{n-1}}_{=0}
$$

$$
\Downarrow
$$

$$
\eta_{t+1} = \Gamma_n \eta_t
$$

 290 イロト イ部 トイモ トイモト É Guo Yuqian (Central South University) **August 12, 2024** 48 / 111

Criterion of asymptotical stability in stochastic sense

$$
\lim_{t \to \infty} \mathbb{E}[\vec{x}_t \mid x_0 = j] = \vec{x}_e \quad \forall j \in \mathcal{D}_n.
$$

$$
\updownarrow \quad \mathbb{E}[\vec{x}_t \mid x_0 = j] = \text{Col}_j[\mathbf{P}^t]
$$

$$
\lim_{t \to \infty} \text{Col}_j[\mathbf{P}^t] = \vec{x}_e \quad \forall j \in \mathcal{D}_n
$$

$$
\updownarrow
$$

Asymptotically stable in distribution

Note: The above results confirm that SSO, SSS, and SD are equivalent indeed.

 Ω

イロト イ押ト イヨト イヨ

Corollary 16

Consider two PLDSs of the same size with TPMs P_1 and P_2 , respectively. Suppose that x_e is the fixed point of both PLDSs, that is,

 ${\bf P}_1\vec{x}_e = {\bf P}_2\vec{x}_e = \vec{x}_e.$

- Suppose that $P_1 \sqsubseteq P_2$. If PLDS P_1 is asymptotical x_e -stable, then, so is $PLDS P_2$.
- \bullet Suppose that ${\bf P}_1 \sim_b {\bf P}_2$. Then, PLDS ${\bf P}_1$ is asymptotical x_e -stable iff PLDS P_2 is asymptotical x_e -stable.

イロト イ押ト イヨト イヨト

 Ω

Example 17

The STGs corresponding the three TPMs satisfying $(x_e = 3)$

$$
\mathbf{P}_1 \vec{x}_e = \mathbf{P}_2 \vec{x}_e = \mathbf{P}_3 \vec{x}_e = \vec{x}_e,
$$

 ${\bf P}_1 \sqsubset {\bf P}_2 \sim_h {\bf P}_3.$

Asymptotical Set Stability

$$
\lim_{t \to \infty} \mathbb{P} \left\{ x_t \in \mathcal{M} \mid x_0 = j \right\} = 1 \quad \forall j \in \mathcal{D}_n.
$$

$$
\Downarrow
$$

$$
\lim_{t \to \infty} \mathbb{P} \left\{ x_t \in I(\mathcal{M}) \mid x_0 = j \right\} = 1 \quad \forall j \in \mathcal{D}_n.
$$

$$
\Downarrow
$$

$$
\left\{ \begin{array}{ll} I(\mathcal{M}) \neq \emptyset \\ x_0 \to I(\mathcal{M}) \quad \forall x_0 \end{array} \right.
$$

Note: $x_0 \to I(\mathcal{M})$ means $x_0 \to x$ for some $x \in I(\mathcal{M})$.

メロトメ 倒 トメ ミトメ ミト
2.2 Reachability-based Stability Analysis

STG of a asymptotically M -stable PLDS that is not finite-time stable

 299

Guo Yuqian (Central South University) **August 12, 2024** 53 / 111

4 ロ ▶ 4 母 ▶ 4

Outline

[Basic Concepts and Preliminaries](#page-1-0) • [Probabilistic Logic Dynamical Systems](#page-3-0) • [Nonnegative Matrices](#page-28-0) **[Stability Analysis](#page-31-0)** • [Definitions of Stability](#page-33-0) **• [Reachability-based Stability Analysis](#page-44-0) • [Error-based Stability Analysis](#page-73-0) [State Feedback Stabilization](#page-82-0) • [Finite-time Stabilization by State Feedback](#page-87-0)** [Asymptotical Stabilization by State Feedback](#page-100-0) **[Output Feedback Stabilization](#page-109-0) • [Deterministic and Random Output Feedback](#page-111-0) • [Stabilizability by Random Output Feedback](#page-122-0) • [Optimal Random Output Feedback](#page-133-0)**

イロト イ母 ト イヨ ト イヨ)

 QQ

• Dynamics of State PDV $\pi_t := \mathbb{E} \vec{x}_t$

$$
\boldsymbol{\pi}_{t+1} = \mathbf{P}\boldsymbol{\pi}_t, \quad \boldsymbol{\pi}_0 = \vec{x}_0 \in \Delta_n.
$$

 \triangleright **Note:** The PLDS is asymptotically x_e -stable iff

$$
\lim_{t\to\infty}\pi_t=\vec{x}_e,\quad \forall \pi_0\in\Delta_n.
$$

• Dynamics of State PDV $\pi_t := \mathbb{E} \vec{x}_t$

$$
\boldsymbol{\pi}_{t+1} = \mathbf{P}\boldsymbol{\pi}_t, \quad \boldsymbol{\pi}_0 = \vec{x}_0 \in \Delta_n.
$$

 \triangleright **Note:** The PLDS is asymptotically x_e -stable iff

$$
\lim_{t\to\infty}\pi_t=\vec{x}_e,\quad \forall \pi_0\in\Delta_n.
$$

• Error System: We define the state distribution error as

$$
\boldsymbol{e}_t := \boldsymbol{\pi}_t - \vec{x}_e
$$

If x_e is a fixed point, then,

$$
\boldsymbol{e}_{t+1} = \mathbf{P}\boldsymbol{e}_t, \quad \boldsymbol{e}_0 \in \Delta_n - \vec{x}_e,
$$

where $\Delta_n - \vec{x}_e := \{ \delta_n^j - \vec{x}_e \mid j \in \mathscr{D}_n \}.$

• $n-1$ -dimensional invariant subspace of error system: We define

$$
\alpha_i := \delta_n^i - \delta_n^{x_e}, \quad i \in [1:n].
$$

We construct an $n \times (n-1)$ matrix as

$$
\mathbf{M}_{x_e}:=[\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_{x_e-1}, \boldsymbol{\alpha}_{x_e+1}, \cdots, \boldsymbol{\alpha}_n].
$$

Then \mathbf{M}_{x_e} is of full column rank. We define

$$
\mathcal{M}_{x_e} := \text{Span}\{\Delta_n - \vec{x}_e\} = \text{Span}\{\mathbf{M}_{x_e}\}.
$$

 \triangleright By the linearity, the error system

$$
\boldsymbol{e}_{t+1} = \mathbf{P}\boldsymbol{e}_t, \quad \boldsymbol{e}_0 \in \Delta_n - \vec{x}_e
$$

is finite-time/asymptotically stable iff the following system is finite-time/asymptotically stable:

$$
\boldsymbol{e}_{t+1} = \mathbf{P}\boldsymbol{e}_t, \quad \boldsymbol{e}_0 \in \mathcal{M}_{x_e}
$$

 4 ロ } 4 4 9 } 4 \equiv } 4 \equiv }

Lemma 18

If x_e is a fixed point, then, \mathcal{M}_{x_e} is an $(n-1)$ -dimensional invariant subspace of

 $e_{t+1} = Pe_t$

Proof:

- $\mathbf{1}_n$ is orthogonal to each $\boldsymbol{\alpha}_i, \, i \in [1:n] \setminus \{x_e\}.$ Thus, it is orthogonal to $\mathcal{M}_{x_e}.$
- For any $\boldsymbol{e}_0\in\mathcal{M}_{x_e}$ and any $t, \, \boldsymbol{e}_t = \mathbf{P}^t\boldsymbol{e}_0$ and

$$
\mathbf{1}_n^\top \mathbf{e}_t = \underbrace{\mathbf{1}_n^\top \mathbf{P}^t}_{=\mathbf{1}_n^\top} \mathbf{e}_0 = \mathbf{1}_n^\top \mathbf{e}_0 = 0.
$$

Thus, \boldsymbol{e}_t is orthogonal to $\boldsymbol{1}_n$ and $\boldsymbol{e}_t \in \mathcal{M}_{x_e}.$

• Restriction of error system on \mathcal{M}_{x_e}

 \triangleright We define the coordinate transformation as

$$
\boldsymbol{e}_t = [\mathbf{M}_{x_e}, \mathbf{1}_n] \left[\begin{array}{c} \boldsymbol{z}_1(t) \\ z_2(t) \end{array} \right] = \mathbf{M}_{x_e} \boldsymbol{z}_1(t) + \mathbf{1}_n z_2(t)
$$

where $\boldsymbol{z}_1(t) \in \mathbb{R}^{n-1}$, $z_2(t) \in \mathbb{R}$. Then,

$$
\begin{bmatrix} z_1(t+1) \\ z_2(t+1) \end{bmatrix} = \begin{bmatrix} \mathbf{M}_{x_e}^+ \mathbf{P} \mathbf{M}_{x_e} & \mathbf{M}_{x_e}^+ \mathbf{P} \mathbf{1}_n \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix}
$$

where $\mathbf{M}_{x_e}^+ := (\mathbf{M}_{x_e}^\top \mathbf{M}_{x_e})^{-1} \mathbf{M}_{x_e}^\top$ is the pseudo-inverse of \mathbf{M}_{x_e} .

In the z-coordinate system, $\mathcal{M}_{x_e} = \{(\boldsymbol{z}_1^\top, z_2)^\top \in \mathbb{R}^n \mid z_2 = 0\}$. By letting $z_2(t) = 0$,

$$
\boldsymbol{z}_1(t+1) = \mathbf{M}_{x_e}^+ \mathbf{P} \mathbf{M}_{x_e} \boldsymbol{z}_1(t)
$$

イロト イ押 トイヨ トイヨー

 Ω

Theorem 19 The PLDS is finite-time x_e -stable iff

- \bullet x_e is a fixed point.
- The $(n-1) \times (n-1)$ matrix $\mathbf{D} := \mathbf{M}_{x_e}^+ \mathbf{P} \mathbf{M}_{x_e}$ is nipolent.

Theorem 20

The PLDS is asymptotically x_e -stable if θ

 \bullet x_e is a fixed point.

The $(n-1) \times (n-1)$ matrix $\mathbf{D} := \mathbf{M}_{x_e}^+ \mathbf{P} \mathbf{M}_{x_e}$ is Schur stable.

^aGuo Yugian et al. "Asymptotical Stabilization of Logic Dynamical Systems via Output-Based Random Control". In: IEEE transactions on Automatic Control 69.5 (2024), pp. 3286 –3293.

Theorem 20

The PLDS is asymptotically x_e -stable if θ

 \bullet x_e is a fixed point.

The $(n-1) \times (n-1)$ matrix $\mathbf{D} := \mathbf{M}_{x_e}^+ \mathbf{P} \mathbf{M}_{x_e}$ is Schur stable.

^aGuo Yugian et al. "Asymptotical Stabilization of Logic Dynamical Systems via Output-Based Random Control". In: IEEE transactions on Automatic Control 69.5 (2024), pp. 3286 –3293.

Remark 1

Suppose Q is an $(n-1) \times (n-1)$ positive-definite matrix. Then, by according to Theorem [20,](#page-80-0) the PLDS is asymptotically x_e -stable iff there exists an $(n-1) \times (n-1)$ positive-definite matrix Ω such that

$$
\mathbf{D}^{\top} \Omega \mathbf{D} - \Omega = -Q.
$$

∍

←ロ ▶ → 何 ▶ → ヨ ▶

 290

Outline

- **[Basic Concepts and Preliminaries](#page-1-0)**
	- **[Probabilistic Logic Dynamical Systems](#page-3-0)**
	- [Nonnegative Matrices](#page-28-0)
- **[Stability Analysis](#page-31-0)**
	- **•** [Definitions of Stability](#page-33-0)
	- **•** [Reachability-based Stability Analysis](#page-44-0)
	- **•** [Error-based Stability Analysis](#page-73-0)
- **[State Feedback Stabilization](#page-82-0)**
	- **•** [Finite-time Stabilization by State Feedback](#page-87-0)
	- [Asymptotical Stabilization by State Feedback](#page-100-0)
- **[Output Feedback Stabilization](#page-109-0)**
	- [Deterministic and Random Output Feedback](#page-111-0)
	- **[Stabilizability by Random Output Feedback](#page-122-0)**
	- **[Optimal Random Output Feedback](#page-133-0)**

B x x B

∢ □ ▶ ◀ [□] ▶ ◀

 299

Outline

[Basic Concepts and Preliminaries](#page-1-0) • [Probabilistic Logic Dynamical Systems](#page-3-0) • [Nonnegative Matrices](#page-28-0) **[Stability Analysis](#page-31-0)** • [Definitions of Stability](#page-33-0) **• [Reachability-based Stability Analysis](#page-44-0) • [Error-based Stability Analysis](#page-73-0) [State Feedback Stabilization](#page-82-0) • [Finite-time Stabilization by State Feedback](#page-87-0)** [Asymptotical Stabilization by State Feedback](#page-100-0) **[Output Feedback Stabilization](#page-109-0) • [Deterministic and Random Output Feedback](#page-111-0) • [Stabilizability by Random Output Feedback](#page-122-0) • [Optimal Random Output Feedback](#page-133-0)**

イロト イ母 ト イヨ ト イヨ)

3. State Feedback Stabilization

• Consider a PLDS

$$
x_{t+1} = f(w_t, u_t, x_t)
$$

and its algebraic form

$$
\vec{x}_{t+1} = L_f \ltimes \vec{w}_t \ltimes \vec{u}_t \ltimes \vec{x}_t
$$

- \blacktriangleright $x_t \in \mathscr{D}_n, u_t \in \mathscr{D}_m, u_t \in \mathscr{D}_q$
- \blacktriangleright f : $\mathscr{D}_{n_{w}} \times \mathscr{D}_{m} \times \mathscr{D}_{n} \rightarrow \mathscr{D}_{n}$;
- $\blacktriangleright w_t \sim \boldsymbol{p}^w;$
- $L_f \in \mathscr{L}_{n \times n_w mn}$
- FPMs $\mathbf{P} = L_f \ltimes \boldsymbol{p}^w$, $\mathbf{P}_j = L_f \ltimes \boldsymbol{p}^w \ltimes \delta_m^j$.

3. State Feedback Stabilization

Closed-loop TPM under State Feedback

$$
\vec{u}_t = K\vec{x}_t, \quad K \in \mathcal{L}_{m \times n}
$$

$$
\downarrow
$$

$$
\vec{x}_{t+1} = L_f \times \vec{w}_t \times \vec{u}_t \times \vec{x}_t
$$

\n
$$
= L_f \times \vec{w}_t \times K \times \vec{x}_t \times \vec{x}_t
$$

\n
$$
= L_f \times \vec{w}_t \times K \mathbf{R}_{[n]} \vec{x}_t
$$

 $\mathbf{R}_{[n]}$: Power-reducing Matrix

⇓

 $\mathbf{P}_K = (L_f \ltimes \boldsymbol{p}^w) K \mathbf{R}_{[n]}.$

3. State Feedback Stabilization

• Problem: Find a state-feedback

$$
u(t) = Kx(k)
$$

to stabilize a PBN to a point or a subset in finite-time or asymptotically.

o If

$$
K = \delta_m[k_1, k_2, \cdots, k_{2^n}]
$$

Then, the TPM of the closed loop, denoted by P_K , is

$$
\mathrm{Col}_j(\mathbf{P}_K) = \mathrm{Col}_j(\mathbf{P}_{k_j})
$$

Outline

[Basic Concepts and Preliminaries](#page-1-0) • [Probabilistic Logic Dynamical Systems](#page-3-0) • [Nonnegative Matrices](#page-28-0) **[Stability Analysis](#page-31-0)** • [Definitions of Stability](#page-33-0) **• [Reachability-based Stability Analysis](#page-44-0) • [Error-based Stability Analysis](#page-73-0) [State Feedback Stabilization](#page-82-0) •** [Finite-time Stabilization by State Feedback](#page-87-0) [Asymptotical Stabilization by State Feedback](#page-100-0) **[Output Feedback Stabilization](#page-109-0) • [Deterministic and Random Output Feedback](#page-111-0) • [Stabilizability by Random Output Feedback](#page-122-0) • [Optimal Random Output Feedback](#page-133-0)** Guo Yuqian (Central South University) August 12, 2024 66 / 111

Hierarchical structure of the STG of a Finite-time stable PLDS

$$
\Omega_0 = \{x_e\}
$$

\n
$$
\Omega_1 = \{x \mid \mathbb{P}\{x_{t+1} \in \Omega_0 \mid x_t = x\} = 1\}
$$

\n
$$
\Omega_k = \{x \mid \mathbb{P}\{x_{t+1} \in \Omega_{k-1} \mid x_t = x\} = 1\}
$$

• We can always rearrange the STG into the hierarchical structure for a finite-time stable PLDS.

メロトメ 倒 トメ ミトメ ミト

Finite-time Stablizability by State Feedback

 \triangleright Define a sequence of subsets as

$$
\begin{cases} \n\Omega_0 = \{x_e\} \\
\Omega_k = \{x \mid \exists u \text{ s.t. } \mathbb{P}\{x_{t+1} \in \Omega_{k-1} \mid x_t = x, u_t = u\} = 1\} \\
k = 1, 2, 3, \dots\n\end{cases}
$$

If x_e is control invariant, then $\Omega_0 \subset \Omega_1 \subset \Omega_2 \subset \cdots$

Theorem 21

A PLDS is finite-time stabilizable w.r.t. x_e by a state feedback if θ

 x_e is control invariant;

There is a positive integer $K \leq n-1$ such that $\Omega_K = \mathscr{D}_n$.

イロト イ部 トイミト イミト

 Ω

Guo Yuqian (Central South University) August 12, 2024 68 / 111

aRui Li, Meng Yang, and Tianguang Chu. "State feedback stabilization for probabilistic Boolean networks". In: Automatica 50.4 (2014), pp. 1272–1278.

• Design of Finite-time Stabilizing feedback gain⁵

Assigning a control $u(x_e)$ for x_e such that

$$
\mathbb{P}\{x_{t+1} = x_e \mid x_t = x_e\} = 1;
$$

► Assigning a control $u(x)$ for every $x \in \Omega_k \setminus \Omega_{k-1}$ such that

$$
\mathbb{P}\{x_{t+1} \in \Omega_{k-1} \mid x_t = x\} = 1.
$$

 \blacktriangleright Then.

$$
K = \delta_m[u(1), u(2), \cdots, u(n)]
$$

 $⁵Rui Li, Meng Yang, and Tianguang Chu. "State feedback stabilization for probabilistic Boolean networks". In:$ </sup> Automatica 50.4 (2014), pp. 1272–1278. 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Guo Yuqian (Central South University) August 12, 2024 69 / 111

• Finite-time Feedback Set Stabilization

Finite-time Feedback M-Stabilizable

 $\mathbb{\hat{I}}$ Finite-time Feedback $I_c(\mathcal{M})$ -Stabilizable

Outline

• [Probabilistic Logic Dynamical Systems](#page-3-0) • [Nonnegative Matrices](#page-28-0) **[Stability Analysis](#page-31-0)** • [Definitions of Stability](#page-33-0) **• [Reachability-based Stability Analysis](#page-44-0) • [Error-based Stability Analysis](#page-73-0) [State Feedback Stabilization](#page-82-0) • [Finite-time Stabilization by State Feedback](#page-87-0)** [Asymptotical Stabilization by State Feedback](#page-100-0) **[Output Feedback Stabilization](#page-109-0) • [Deterministic and Random Output Feedback](#page-111-0) • [Stabilizability by Random Output Feedback](#page-122-0) • [Optimal Random Output Feedback](#page-133-0)** Guo Yuqian (Central South University) August 12, 2024 72 / 111

[Basic Concepts and Preliminaries](#page-1-0)

Asymptotical Feedback Stabilizability

Theorem 22

A state x_e is asymptotically feedback stabilizable if e^{ib}

 $\bullet x_e$ is a control-fixed point, and

2 $x_0 \stackrel{u}{\rightarrow} x_e \,\forall x_0$, that is,

$$
\vec{x}_e^{\top} (\mathbf{P} \ltimes \mathbf{1}_m)^{n-1} \succ 0.
$$

イロト イ押 トイヨ トイヨー

 Ω

aRongpei Zhou et al. "Asymptotical Feedback Set Stabilization of Probabilistic Boolean Control Networks". In: IEEE Transactions on Neural Network & Learning Systems 31.11 (2020), pp. 4524–4537.

 $b_{\text{Wang} }$ Liging et al. "Stabilization and Finite-Time Stabilization of Probabilistic Boolean Control Networks". In: IEEE Transactions on Systems, Man, and Cybernetics: Systems 51.3 (2021), pp. 1559–1566.

Asymptotical Feedback Set Stabilizability

Theorem 23

A subset M is asymptotically feedback stabilizable if P

- \bigcirc $I_c(\mathcal{M}) \neq \emptyset$, and
- 2 $x_0 \stackrel{u}{\rightarrow} I_c(\mathcal{M}) \ \forall x_0$, that is,

$$
\sum_{j\in I_c(\mathcal{M})} \text{Row}_j\left[(\mathbf{P} \ltimes \mathbf{1}_m)^{n-1} \right] \succ 0.
$$

^aRongpei Zhou et al. "Asymptotical Feedback Set Stabilization of Probabilistic Boolean Control Networks". In: IEEE Transactions on Neural Network & Learning Systems 31.11 (2020), pp. 4524–4537.

 Ω

イロト イ部 トイモ トイモト

- Design of Asymptotically Stabilizing Feedback
	- **Decomposition of State Space:**

$$
\begin{cases} \Theta_0 = I_c(\mathcal{M}), \\ \Theta_k = \left\{ j \in \left(\bigcup_{s=0}^{k-1} \Theta_s \right)^c \Big| \sum_{i \in \Theta_{k-1}} [\mathbf{P} \ltimes \mathbf{1}_m]_{i,j} > 0 \right\}, \\ k = 1, 2, \cdots, \lambda. \end{cases}
$$

► For any $j\in\mathscr{D}_n$, there is a unique k_j such that $j\in\Theta_{k_j}.$ Then, we assign state i a control u_i as

$$
\sum_{i\in\Theta_{k_j-1}}[\mathbf{P}\ltimes\delta_m^{u_j}]_{i,j}>0\quad\text{where }\Theta_{-1}:=\Theta_0
$$

In Stabilizing state feedback gain: $K = \delta_m[u_1, u_2, \cdots, u_n]$.

3.2 Asymptotical Stabilization by State Feedback

- **[Basic Concepts and Preliminaries](#page-1-0)**
	- **[Probabilistic Logic Dynamical Systems](#page-3-0)**
	- [Nonnegative Matrices](#page-28-0)
- **[Stability Analysis](#page-31-0)**
	- **•** [Definitions of Stability](#page-33-0)
	- **•** [Reachability-based Stability Analysis](#page-44-0)
	- **•** [Error-based Stability Analysis](#page-73-0)
- **[State Feedback Stabilization](#page-82-0)**
	- **•** [Finite-time Stabilization by State Feedback](#page-87-0)
	- [Asymptotical Stabilization by State Feedback](#page-100-0)
- **[Output Feedback Stabilization](#page-109-0)**
	- [Deterministic and Random Output Feedback](#page-111-0)
	- **[Stabilizability by Random Output Feedback](#page-122-0)**
	- **[Optimal Random Output Feedback](#page-133-0)**

ミドマミ

∢ □ ▶ ◀ [□] ▶ ◀

 Ω

Logic Dynamical System in Algebraic Form

$$
\begin{cases} \n\vec{x}_{t+1} = L \ltimes \vec{w}_t \ltimes \vec{u}_t \ltimes \vec{x}_t \\
\vec{y}_t = H\vec{x}_t\n\end{cases} \tag{6}
$$

$$
\begin{aligned}\n&\blacktriangleright x_t \in \mathscr{D}_n, \ u_t \in \mathscr{D}_m, \ \text{and} \ y_t \in \mathscr{D}_q \\
&\blacktriangleright \ \omega_t \sim p^\omega \in \Upsilon_N\n\end{aligned}
$$

\bullet Deterministic output feedback⁶⁷⁸

$$
\vec{u}_t = F\vec{y}_t, \quad F \in \mathscr{L}_{m \times q}
$$

 \triangleright The deterministic output feedback has a limitation (See the next page)

⁶Nicoletta Bof, Ettore Fornasini, and Maria Elena Valcher. "Output feedback stabilization of Boolean control networks". In: Automatica 57 (2015), pp. 21–28.

⁷Haitao Li and Yuzhen Wang. "Output feedback stabilization control design for Boolean control networks". In: Automatica 49.12 (2013), pp. 3641–3645.

⁸Rongjian Liu et al. "Output feedback control for set stabilization of Boolean control networks". In: IEEE transactions on neural networks and learning systems 31.6 (2019), pp. 2129 -2139. $\Box \rightarrow \Box \rightarrow \Box \rightarrow \Box \rightarrow \Box$

つへへ

Example 24 (A Motivating Example)

Consider a PLDS

$$
\left\{ \begin{array}{l} \vec{x}_{t+1} = L \ltimes \vec{\omega}_t \ltimes \vec{u}_t \ltimes \vec{x}_t \\ \vec{y}_t = H\vec{x}_t \end{array} \right.
$$

$$
L = \delta_3[1, 2, 3, 3, 2, 2, 2, 1, 3, 1, 2, 3]
$$

$$
\omega_t \sim \boldsymbol{p}^{\omega} = [0.5, 0, 5]^{\top}, \quad H = \delta_2[1, 1, 2]
$$

 x_e = is unstabilizable by any time-invariant deterministic output feedback.

Example 24 (A Motivating Example)

Consider a PLDS

$$
\left\{ \begin{array}{l} \vec{x}_{t+1} = L \ltimes \vec{\omega}_t \ltimes \vec{u}_t \ltimes \vec{x}_t \\ \vec{y}_t = H\vec{x}_t \end{array} \right.
$$

$$
L = \delta_3[1, 2, 3, 3, 2, 2, 2, 1, 3, 1, 2, 3]
$$

$$
\omega_t \sim \boldsymbol{p}^{\omega} = [0.5, 0, 5]^{\top}, \quad H = \delta_2[1, 1, 2]
$$

 x_e = is unstabilizable by any time-invariant deterministic output feedback.

Is it a stabilizing time-invariant output feedback?

Example 24 (A Motivating Example)

Consider a PLDS

$$
\left\{ \begin{array}{l} \vec{x}_{t+1} = L \ltimes \vec{\omega}_t \ltimes \vec{u}_t \ltimes \vec{x}_t \\ \vec{y}_t = H\vec{x}_t \end{array} \right.
$$

$$
L = \delta_3[1, 2, 3, 3, 2, 2, 2, 1, 3, 1, 2, 3]
$$

$$
\omega_t \sim \boldsymbol{p}^{\omega} = [0.5, 0, 5]^{\top}, \quad H = \delta_2[1, 1, 2]
$$

 x_e = is unstabilizable by any time-invariant deterministic output feedback.

Is it a stabilizing time-invariant output feedback? Yes!

Example 25 (Example [24](#page-113-0) Revisited)

• We apply the following control strategy:

 $u_t \sim$ $\left[\begin{array}{cc} 0.5 & 1 \ 0.5 & 0 \end{array}\right] \vec{y}_t.$

- At each t, u_t is randomly selected from \mathscr{D}_2 according to the above distribution.
- The closed-loop is a homogeneous Markovian chain and is asymptotically stable w.r.t. 3.

イロト イ部 トイモ トイモト

Þ

 QQ

Random Output Feedback

 $u_t \sim \Pi \vec{y}_t$

- \blacktriangleright Each column of $\bm{\Pi} \in \mathbb{R}^{m \times q}$ is a PDV satisfying $\bm{\Pi} \succeq 0$, $\bm{1}_m^\top \bm{\Pi} = \bm{1}_q^\top.$
- Deterministic output feedback $\vec{u}_t = F \vec{y}_t$ can be regarded as a particular random output feedback with $\Pi = F$.

 Ω

イロト イ母 ト イヨ ト イヨ)

An Equivalent Random Switching Output Feedback Model

Introduce q mutually independent random sequences $\eta_r(t) \in \mathscr{D}_m$, $r \in \mathscr{D}_q$ that are i.i.d. with

$$
\eta_r(t) \sim \mathrm{Col}_r(\mathbf{\Pi}), \quad r \in \mathscr{D}_q.
$$

Then, the equivalent switching model for ROF $u_t \sim \prod \vec{y}_t$ is given by

$$
\vec{u}_t = F_{\eta_t} \vec{y}_t
$$

with $F_{\eta_t} := [\vec{\eta}_1(t), \ \vec{\eta}_2(t), \ \cdots, \ \vec{\eta}_q(t)].$ ► It is easily checked that $u_t \sim \mathbb{E} \vec{u}_t = \mathbb{E}(F_{\eta_t}\vec{y}_t) = (\mathbb{E} F_{\eta_t}) \vec{y}_t = \mathbf{\Pi} \vec{y}_t.$

 Ω

 $A \Box B$ $A \Box B$ $A \Box B$ $A \Box B$ $A \Box B$

Assumption 1

The selection probability of u_t at each step t is completely determined by y_t ; i.e., for any random event $\mathcal E$ satisfying

$$
\mathbb{P}\{y_t=j,\mathcal{E}\}\neq\emptyset,
$$

the following holds

$$
\mathbb{P}\left\{u_t=i \mid y_t=j, \mathcal{E}\right\} = \mathbb{P}\left\{u_t=i \mid y_t=j\right\}.
$$

 \leftarrow \leftarrow

Closed-loop system under random output feedback

- \triangleright The random output feedback is essentially a time-invariant strategy.
- ► The closed-loop system under the random output feedback $u_t \sim \Pi \vec{u}_t$ is a homogeneous Markovian chain with the 1-step transition probability matrix (TPM)

$$
\mathbf{P}(\Pi) = \mathbf{P} \ltimes (\Pi H) \ltimes \mathbf{R}_{[n]} = \mathbf{P}(\Pi H \otimes I_n) \mathbf{R}_{[n]},
$$

where $\mathbf{R}_{[n]}$ is the power-reducing matrix and $\mathbf{P} = L \ltimes \boldsymbol{p}^{\omega}$. (See the next page for the derivation)

Derivation of the closed-loop TPM:

$$
\vec{x}_{t+1} = L \times \vec{w}_t \times \vec{u}_t \times \vec{x}_t
$$
\n
$$
= L \times \vec{w}_t \times F_{\eta_t} \times H \times \vec{x}_t \times \vec{x}_t
$$
\n
$$
= L \times \vec{w}_t \times F_{\eta_t} \times H \times \mathbf{R}_{[n]} \times \vec{x}_t
$$
\n
$$
\downarrow
$$
\n
$$
\mathbf{P}(\mathbf{\Pi}) = \mathbf{P} \times (\mathbf{\Pi} H) \times \mathbf{R}_{[n]}
$$

o Set of Output Feedback Gain Matrice:

$$
\mathcal{K} = \left\{ \boldsymbol{\Pi} \in \mathbb{R}^{m \times q} \mid \boldsymbol{\Pi} \succeq 0, \; \mathbf{1}_m^\top \boldsymbol{\Pi} = \mathbf{1}_q^\top \right\}
$$

o Set of Output Feedback Gain Matrice:

$$
\mathcal{K} = \left\{ \mathbf{\Pi} \in \mathbb{R}^{m \times q} \mid \mathbf{\Pi} \succeq 0, \mathbf{1}_m^\top \mathbf{\Pi} = \mathbf{1}_q^\top \right\}
$$

o Set of Equilibrium-preserving Output Feedback Gain Matrices:

$$
\mathcal{K}_{x_e} := \left\{ \Pi \in \mathcal{K} \mid \mathbf{P}(\Pi) \vec{x}_e = \vec{x}_e \right\}
$$

o Set of Output Feedback Gain Matrice:

$$
\mathcal{K} = \left\{ \mathbf{\Pi} \in \mathbb{R}^{m \times q} \mid \mathbf{\Pi} \succeq 0, \mathbf{1}_m^\top \mathbf{\Pi} = \mathbf{1}_q^\top \right\}
$$

o Set of Equilibrium-preserving Output Feedback Gain Matrices:

$$
\mathcal{K}_{x_e} := \left\{ \Pi \in \mathcal{K} \mid \mathbf{P}(\Pi) \vec{x}_e = \vec{x}_e \right\}
$$

• Set of Stabilizing Output Feedback Gain Matrices:

 $\mathcal{SK}_{x_e} := \big\{ \Pi \in \mathcal{K} \bigm| \Pi \text{ is asymptotically } x_e\text{-stabilizing} \big\}$.

o Set of Output Feedback Gain Matrice:

$$
\mathcal{K} = \left\{ \mathbf{\Pi} \in \mathbb{R}^{m \times q} \mid \mathbf{\Pi} \succeq 0, \mathbf{1}_m^\top \mathbf{\Pi} = \mathbf{1}_q^\top \right\}
$$

• Set of Equilibrium-preserving Output Feedback Gain Matrices:

$$
\mathcal{K}_{x_e} := \left\{ \Pi \in \mathcal{K} \mid \mathbf{P}(\Pi) \vec{x}_e = \vec{x}_e \right\}
$$

• Set of Stabilizing Output Feedback Gain Matrices:

 $\mathcal{SK}_{x_e} := \big\{ \Pi \in \mathcal{K} \bigm| \Pi \text{ is asymptotically } x_e\text{-stabilizing} \big\}$.

$$
\quad \blacktriangleright \;\mathcal{SK}_{x_e} \subseteq \mathcal{K}_{x_e} \subseteq \mathcal{K}
$$

► The system is asymptotically x_e -stabilizable iff there is a $\mathbf{\Pi} \in \dot{\mathcal{K}}$ under which every state has a path t[o](#page-126-0) x_e i[n t](#page-125-0)[he](#page-127-0) [c](#page-122-0)[l](#page-123-0)o[se](#page-127-0)[d-](#page-0-0)[loo](#page-149-0)[p](#page-0-0) [ST](#page-149-0)[G.](#page-0-0)

 Ω

← ロ → → ← 何 →

Proposition 4

Suppose that $\mathbf{\Pi}_1, \mathbf{\Pi}_2 \in \mathcal{K}_{x_e}.$

- ${\bf D}$ If ${\bf \Pi}_1\sqsubseteq {\bf \Pi}_2$ and ${\bf \Pi}_1\in {\cal SK}_{x_e}.$ Then, ${\bf \Pi}_2\in {\cal SK}_{x_e}.$
- 2 If $\Pi_1 \sim_h \Pi_2$, then, $\Pi_1 \in \mathcal{SK}_{x_e}$ iff $\Pi_2 \in \mathcal{SK}_{x_e}$.

Proof: (Claim 1) By Lemma [5,](#page-30-0) if $\Pi_1 \sqsubset \Pi_2$, then,

 $P(\Pi_1) = P \ltimes (\Pi_1 H) \ltimes R_{[n]} \sqsubseteq P \ltimes (\Pi_2 H) \ltimes R_{[n]} = P(\Pi_2).$

The claims follow by using Corollary [16.](#page-69-0)

 QQ $A \Box B$ $A \Box B$ $A \Box B$ $A \Box B$ $A \Box B$

- A Partial Order Structure of \mathcal{K}_{x_e}/\sim_h
	- \blacktriangleright Equivalence Class:

$$
\langle \Pi \rangle := \{ \bar{\Pi} \in \mathcal{K}_{x_e} \mid \bar{\Pi} \sim_h \Pi \}
$$

Quotient set:

$$
\mathcal{K}_{x_e}/\sim_h:=\{\langle\Pi\rangle\bigm|\Pi\in\mathcal{K}_{x_e}\}
$$

► Partial ordered set $(\mathcal{K}_{x_e}/\sim_h, \sqsubseteq)$: If $\Pi_1 \sqsubseteq \Pi_2$, then,

 $\bar{\mathbf{\Pi}}_1 \sqsubseteq \bar{\mathbf{\Pi}}_2, \quad \forall \bar{\mathbf{\Pi}}_1 \in \langle \mathbf{\Pi}_1 \rangle, \forall \bar{\mathbf{\Pi}}_2 \in \langle \mathbf{\Pi}_2 \rangle.$

In this case, we denote $\langle \Pi_1 \rangle \sqsubseteq \langle \Pi_2 \rangle$. Then, " \sqsubseteq " defines a partial order relation on \mathcal{K}_{x_e}/\sim_h :

- \star Reflexivity: $\langle \Pi \rangle \sqsubseteq \langle \Pi \rangle$ for any $\langle \Pi \rangle \in \mathcal{K}_{x_e} / \sim_h$
- $f\star$ Antisymmetry: $\langle \Pi_1\rangle\sqsubseteq \langle \Pi_2\rangle$ and $\langle \Pi_2\rangle \sqsubseteq \langle \Pi_1\rangle$ implies $\langle \Pi_1\rangle \nrightarrow$ $\langle \Pi\rangle$
- \star Transitivity: $\langle \Pi_1 \rangle \sqsubseteq \langle \Pi_2 \rangle$ and $\langle \Pi_2 \rangle \sqsubseteq \langle \Pi_3 \rangle$ implies $\langle \Pi_1 \rangle \sqsubseteq \langle \Pi_3 \rangle$ in

 Ω

∢ ロ ▶ ィ 何 ▶ ィ

- The unique maximum element of poset $(\mathcal{K}_{x_e}/\sim_h, \sqsubseteq)$
	- \triangleright Uniformly distributed Feedback Gain Matrix

$$
Col_j(\Gamma_{x_e}) = \begin{cases} \frac{1}{m_1} \mathbf{1}_m, & j \neq h_{j_e} \\ \frac{1}{|\mathcal{U}_{x_e}|} \sum_{u \in \mathcal{U}_{x_e}} \vec{u}, & j = h_{j_e}, \end{cases} \quad j \in [1:q]
$$

 $\star \ \mathcal{U}_{x_e} := \left\{ u \in \mathscr{D}_m \mid \mathbf{P} \ltimes \vec{u} \ltimes \vec{x}_e = \vec{x}_e \right\}$ \star h_{ie} = idx(H \vec{x}_e)

 \blacktriangleright $\langle \Gamma_{x_e} \rangle$ is the unique maximum element of poset $(\mathcal{K}_{x_e}/\sim_h, \sqsubseteq)$ $\textbf{1} \ \ \boldsymbol{\Gamma}_{x_e} \in \mathcal{K}_{x_e}.$ $\textbf{2}$ For any $\textbf{H}\in \mathcal{K}_{x_e}$, it holds that $\langle \textbf{\Pi}\rangle \sqsubseteq \langle \Gamma_{x_e}\rangle.$

э

 290

イロト イ部 トイモ トイモト

Example 26

(~xt+1 = L n ~ω^t n ~u^t n ~x^t ~y^t = H~x^t L¹ = δ4[1, 2, 3, 3, 2, 2, 3, 4], L² = δ4[2, 1, 3, 1, 2, 3, 4, 2] ω^t ∼ p ^ω = [0.5, 0, 5]>, H = δ3[2, 3, 1, 1], x^e = 3 P = L n p ^w = 0.5 0.5 0 0.5 0 0 0 0 0.5 0.5 0 0 1 0.5 0 0.5 0 0 1 0.5 0 0.5 0.5 0 0 0 0 0 0 0 0.5 0.5 j^e = idx(H~xe) = 1, U^x^e = {1} K^x^e = (Π = " 1 ∗ ∗ ⁰ ∗ ∗ #) , ^Γ^x^e ⁼ " 1 0.5 0.5 0 0.5 0.5 #

而天

 299

重

イロメ イ部メ イヨメ イヨメー

Guo Yuqian (Central South University) August 12, 2024 94 / 111

Theorem 27

A PLDS is asymptotically x_e -stabilizable by random output feedback iff x_e is a control-fixed point and $\mathbf{\Gamma}_{x_e}$ is asymptotically x_e -stabilizing.

- Every $\mathbf{\Pi} \in \langle \mathbf{\Gamma}_{x_e} \rangle$ can be a testing feedback gain matrix.
- This method is not valid for stabilizability under deterministic output feedback, because each equivalence class in \mathscr{L}_{x_e}/\sim_h is a singleton. Thus, the maximal elements are not unique, where \mathscr{L}_{x} denotes the set of equilibrium-preserving logical output feedback gain matrices.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

The Problem of Designing Optimal Random Output Feedback:

 \blacktriangleright Quadratic cost function

$$
J(x_0, \boldsymbol{\Pi}) := \sum_{t=0}^{\infty} \boldsymbol{e}_t^\top S \boldsymbol{e}_t = \sum_{t=0}^{\infty} \left[\boldsymbol{p}_t^x - \vec{x}_e\right]^\top S \left[\boldsymbol{p}_t^x - \vec{x}_e\right]
$$

where S is positive definite.

 \blacktriangleright For any given initial output y_0 , we aim to find a $\mathbf{\Pi} \in \mathcal{SF}_{x_e}$ to minimize

$$
\mathcal{J}(y_0, \mathbf{\Pi}) := \max_{x_0 \in \mathcal{H}^{-1}(y_0)} J(x_0, \mathbf{\Pi}),
$$

where

$$
\mathcal{H}^{-1}(y_0) := \{x_0 \in \mathscr{D}_n \mid H\vec{x}_0 = \vec{y}_0\}.
$$

Zero Gap Between $\langle \Gamma_{x_e} \rangle$ and ${\cal SK}_{x_e}$

Proposition 5

If PLDS [\(6\)](#page-112-0) is asymptotically x_e -stabilizable by random output feedback, then,

$$
\langle \Gamma_{x_e} \rangle \subseteq \mathcal{SK}_{x_e} \subseteq \overline{\langle \Gamma_{x_e} \rangle} = \mathcal{K}_{x_e},
$$

where $\langle \Gamma_{x_e} \rangle$ is the closure of $\langle \Gamma_{x_e} \rangle$, that is,

$$
\overline{\langle \Gamma_{x_e} \rangle} := \left\{ \Pi \in \mathcal{K} \bigm| \exists \text{ } \{\Gamma_k\} \subseteq \langle \Gamma_{x_e} \rangle, \text{ s.t. } \lim_{k \to \infty} \Gamma_k = \Pi \right\}.
$$

メロトメ 倒 トメ ミトメ ミト

Example 28 (Example [26](#page-130-0) Revisited)

$$
\mathcal{K}_{x_e} = \left\{ \Pi = \left[\begin{array}{cc} 1 & * & * \\ 0 & * & * \end{array} \right] \right\}, \quad \Gamma_{x_e} = \left[\begin{array}{cc} 1 & 0.5 & 0.5 \\ 0 & 0.5 & 0.5 \end{array} \right]
$$

Þ

 299

Guo Yuqian (Central South University) **August 12, 2024** 99 / 111

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Example 28 (Example [26](#page-130-0) Revisited)

$$
\mathcal{K}_{x_e} = \left\{ \mathbf{\Pi} = \left[\begin{array}{cc} 1 & * & * \\ 0 & * & * \end{array} \right] \right\}, \quad \Gamma_{x_e} = \left[\begin{array}{ccc} 1 & 0.5 & 0.5 \\ 0 & 0.5 & 0.5 \end{array} \right]
$$

Consider

$$
\mathbf{\Pi} = \left[\begin{array}{ccc} 1 & 1 & 0.5 \\ 0 & 0 & 0.5 \end{array} \right] \in \mathcal{K}_{x_e}
$$

Obviously, $\mathbf{\Pi} \notin \langle \mathbf{\Gamma}_{x_e} \rangle.$ We construct

$$
\mathbf{\Pi}_k := \left[\begin{array}{cc} 1 & 1 - 1/k & 0.5 \\ 0 & 1/k & 0.5 \end{array} \right] \in \langle \mathbf{\Gamma}_{x_e} \rangle, \quad k = 1, 2, \cdots.
$$

Then,

$$
\lim_{k\to\infty}\mathbf{\Pi}_k=\mathbf{\Pi}.
$$

イロト イ部 トイモ トイモト

 QQ

Remark 2

• It can be verified that $\mathcal{J}(y_0, \Pi)$ is continuous with respect to Π within ${\cal SK}_{x_e}$. Thus, by Proposition [5,](#page-135-0)

$$
\inf_{\Pi \in \mathcal{SK}_{x_e}} \mathcal{J}(y_0, \Pi) = \inf_{\Pi \in \langle \Gamma_{x_e} \rangle} \mathcal{J}(y_0, \Pi) =: \lambda^*(y_0).
$$

Guo Yuqian (Central South University) **August 12, 2024** 100 / 111

Based on the error system-based stability analysis in Section [2.](#page-31-1)3

$$
e_{t+1} = \mathbf{P}(\mathbf{\Pi})e_t, \quad e_0 \in \Delta_n - \vec{x}_e,
$$
\n
$$
\downarrow \quad e_t = \mathbf{M}_{x_e} z_1(t)
$$
\n
$$
z_1(t+1) = \underbrace{\mathbf{M}_{x_e}^+ \mathbf{P}(\mathbf{\Pi}) \mathbf{M}_{x_e}}_{\mathbf{D}(\mathbf{\Pi})} z_1(t)
$$
\n
$$
\mathbf{M}_{x_e} := [\alpha_1, \alpha_2, \cdots, \alpha_{x_e-1}, \alpha_{x_e+1}, \cdots, \alpha_n].
$$
\n
$$
\alpha_i := \delta_n^i - \vec{x}_e, \quad i \in [1:n].
$$

$$
J(x_0, \Pi) = \sum_{t=0}^{\infty} e_t^{\top} S e_t = \sum_{t=0}^{\infty} \boldsymbol{z}_1^{\top}(t) \mathbf{M}_{x_e}^{\top} S \mathbf{M}_{x_e} \boldsymbol{z}_1(t)
$$

Lemma 29

Suppose that $\boldsymbol{\Pi} \in \mathcal{SK}_{x_e}.$ The following claims hold:

• There exists an $(n - 1) \times (n - 1)$ positive-definite matrix Ω such that

$$
\mathbf{D}^\top(\mathbf{\Pi})\Omega\mathbf{D}(\mathbf{\Pi}) - \Omega = -\mathbf{M}_{xe}^\top S\mathbf{M}_{xe}
$$

and for any $i \in [1:n]$,

$$
J(i,\boldsymbol{\Pi}) = \boldsymbol{\alpha}_i^\top (\mathbf{M}_{x_e}^+)^{\top} \Omega \mathbf{M}_{x_e}^+ \boldsymbol{\alpha}_i.
$$

 \bullet If an $(n - 1) \times (n - 1)$ positive-definite matrix Ω satisfies

$$
\mathbf{D}^\top(\mathbf{\Pi})\Omega\mathbf{D}(\mathbf{\Pi}) - \Omega \leq -\mathbf{M}_{x_e}^\top S\mathbf{M}_{x_e},
$$

then, for any $i \in [1:n]$, it holds that

$$
J(i,\Pi) \leq \alpha_i^\top (\mathbf{M}_{x_e}^+)^{\top} \Omega \mathbf{M}_{x_e}^+ \alpha_i.
$$

 \Rightarrow

 QQ

イロメ イ部メ イヨメ イヨメー

• Canonical form: A PLDS satisfying

$$
\mathcal{U}_{x_e} = \{1, 2, \cdots, r\}, \quad \vec{y_e} = H\vec{x_e} = \delta_q^1.
$$

If a PLDS is not of the canonical form, we can always convert it to the canonical form through the input and output transformations

$$
\vec{u}_t = \mathbf{U}\vec{v}_t, \quad \vec{\eta}_t = \mathbf{\Theta}\vec{y}_t.
$$

Theorem 30

Suppose that the PLDS is asymptotically x_e -stabilizable and denote $r:=|\mathcal{U}_{x_e}|.$ Then $^{\mathsf{a}}$

O For a given $\lambda > 0$, if there exist symmetric matrices Q and Ω , a vector β , and a matrix Σ such that

$$
\Omega > 0 \tag{7}
$$

$$
\left[\begin{array}{cc} Q & -\mathbf{M}_{xe}^{+}\mathbf{P}\left(\Gamma_{\beta,\Sigma}\right)\mathbf{M}_{xe} \\ * & \Omega - \mathbf{M}_{xe}^{+} S \mathbf{M}_{xe} \end{array}\right] > 0 \tag{8}
$$

$$
\boldsymbol{\alpha}_j^\top (\mathbf{M}_{x_e}^+)^{\top} \Omega \mathbf{M}_{x_e}^+ \boldsymbol{\alpha}_j < \lambda, \quad j \in \text{idx}(\mathcal{H}^{-1}(y_0)) \setminus \{j_e\} \tag{9}
$$

$$
\beta \succ 0, \quad \Sigma \succ 0, \quad 1 - \mathbf{1}_{r-1}^{\top} \beta > 0, \quad \mathbf{1}_{q-1}^{\top} - \mathbf{1}_{m-1}^{\top} \Sigma \succ 0 \tag{10}
$$

$$
Q\Omega = I,\tag{11}
$$

.

イロト イ部 トイモ トイモト

 200

where

$$
\Gamma_{\boldsymbol{\beta},\boldsymbol{\Sigma}} := \left[\begin{array}{cc} 1 - \mathbf{1}_{r-1}^\top \boldsymbol{\beta} & \mathbf{1}_{q-1}^\top - \mathbf{1}_{m-1}^\top \boldsymbol{\Sigma} \\ I_{(m-1)\times (r-1)} \boldsymbol{\beta} & \boldsymbol{\Sigma} \end{array} \right]
$$

Then, $\Gamma_{\boldsymbol{\beta},\boldsymbol{\Sigma}}\in\langle\Gamma_{x_e}\rangle$ is asymptotically x_e -stabilizing and $\mathcal{J}(y_0,\Gamma_{\boldsymbol{\beta},\boldsymbol{\Sigma}})<\lambda.$

O For any $\lambda > \lambda^*(y_0)$, the LMIs [\(7\)](#page-142-0), [\(8\)](#page-142-1), [\(9\)](#page-142-2), and [\(10\)](#page-142-3) with equality constraint [\(11\)](#page-142-4) have a solution.

^aGuo Yuqian et al. "Asymptotical Stabilization of Logic Dynamical Systems via Output-Based Random Control". In: IEEE transactions on Automatic Control 69.5 (2024), pp. 3286 –3293.

Remark 3

- The LMIs with equality constraint can be transformed into the **cone complementary problem** which can be solved with the recursive algorithm proposed in [14].
- \bullet In addition, using the dichotomy for parameter λ , we can find an output feedback gain matrix $\mathbf{\Pi} \in \langle \mathbf{\Gamma}_{x_e} \rangle$ such that the cost $\mathcal{J}(y_0, \mathbf{\Pi})$ approximates the optimal value $\lambda^*(y_0)$ with any given accuracy.

\bullet Reduced model for the lac operon in the bacterium Escherichia coli^[15]

Normal and blunt arrows indicate positive

and negative interactions, respectively.

$$
X_1(t + 1) = \neg U_1(t) \land (X_2(t) \lor X_3(t))
$$

\n
$$
X_2(t + 1) = \neg U_1(t) \land U_2(t) \land X_1(t)
$$

\n
$$
X_3(t + 1) = \neg U_1(t) \land (U_2(t) \lor (U_3(t) \land X_1(t)))
$$

• We consider the problem of stabilizing $X_e = (1, 0, 1)$, which represents the ON status of the lac perion $[11]$, and minimizing

$$
\mathcal{J}(y_0, \boldsymbol{\Pi}) := \max_{x_0 \in \mathcal{H}^{-1}(y_0)} \sum_{t=0}^{\infty} \|e_{\boldsymbol{p}}(t)\|^2
$$

 Ω

[15] A. Veliz-Cuba and B. Stigler, Boolean models can explain bistability in the lac operon. Journal of Computation Biology, vol. 18, no. 6, pp. 783–794, 2011. $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Guo Yugian (Central South University) August 12, 2024 106 / 111

Comparison between TIDOF and random output feedback

Guo Yuqian (Central South University) **August 12, 2024** 107 / 111

 QQ

Þ

イロト イ部 トイモ トイモト

Time-domain Simulation:

- Measurable states are $y_1 = x_1$ and $y_2 = x_3$, $H = \delta_4[1, 2, 1, 2, 3, 4, 3, 4]$.
- ► Initial output is $y_0 = \delta_4^2$, $\mathcal{H}^{-1}(y_0) = \{\delta_8^2, \delta_8^4\}.$
- \triangleright The optimal deterministic and random output feedback gain matrices:

$$
F^* = \delta_8[7, 7, 6, 6], \quad \mathbf{\Pi}^* = \begin{bmatrix} 0 & 0.0297 & 0.0016 & 0.0408 \\ 0 & 0.0297 & 0.0016 & 0.0408 \\ 0 & 0.0297 & 0.0016 & 0.0408 \\ 0 & 0.0297 & 0.0016 & 0.0408 \\ 0 & 0.2072 & 0.4949 & 0.3723 \\ 0 & 0.2072 & 0.4949 & 0.3723 \\ 1 & 0.4329 & 0.0020 & 0.0462 \\ 0 & 0.0339 & 0.0020 & 0.0462 \end{bmatrix}
$$

 Ω

.

∢ ロ ▶ -∢ 何 ▶ -∢ ヨ ▶ -∢ ヨ ▶

The curves of $\| \boldsymbol{e}_{\boldsymbol{p}}(t)\|^2$ with the initial state $x_0 = \delta_8^4$

- Basic theories of stability and feedback stabilization for PLDSs were reviewed.
- New stability result and the random output feedback for PLDSs were discussed.

Thank you!

