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Background

Decoupling refers to the separation of two or more originally interrelated
systems or modules to minimise their mutual influence.

In control systems, decoupling usually refers to the elimination of
cross-coupling between inputs and outputs by designing appropriate control
strategies so that each output of a multiple-input multiple-output (MIMO)
system is controlled by only one of the corresponding inputs, and at the same
time, each input can control only one output.

Disturbance Decoupling; Decomposition. (Decoupling control refers to the
design of controls to reduce or eliminate the interactions between variables in
a multivariable system in order to achieve better control performance)
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Background
The decoupling problem is an important topic in control theory and system design
both for linear and nonlinear systems [1,2]. Decoupling has a wide range of
applications in several fields, including but not limited to:

Industrial automation: decoupling control is used to improve the stability and
efficiency of the production process in chemical, metallurgical, and electric
power industries.
Robot control: Through decoupling control, independent control of each joint
of the robot can be realised to improve the motion precision and flexibility of
the robot.
Aerospace: In the attitude control of aircraft, decoupling control is used to
reduce the mutual influence between different control channels and improve
the stability and safety of the aircraft.
Gene regulatory networks: In actual gene regulatory networks, coupling is
prevalent, which makes it difficult to understand and control the evolution of
gene regulatory networks.

[1] W. Wonham, Linear Multivariable Control: A Geometric Approach, Berlin, Springer-Verlag,
1979.
[2] A. Isidor, Nonlinear Control Systems, Berlin, Springer-Verlag, 1995.
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Algebraic form of BNs

Definition 1.1,[1]
Set A = (aij) ∈ Rm×n, B = (bij) ∈ Rp×q. Let α =lcm(n, p) be the least common
multiple of n and p. The semi-tensor product of A and B is defined as

A n B = (A⊗ I α
n

)(B ⊗ I α
p

). (1)

Remark
In Definition 1, when n = p, the semi-tensor product becomes the conventional
matrix product. Hence the semi-tensor product is a generalization of the
traditional matrix product. In the following discussion, A n B is denoted by AB.

[1] D. Cheng, H. Qi and Z. Li, Analysis and control of Boolean networks: a semi-tensor product
approach. London: Springer, 2011.
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Algebraic form of BNs

Lemma 1.1,[1]
For a logical function f (X1,X2, · · · ,Xn) : Bn 7→ B, there is a unique matrix
Mf ∈ L2n×2n , called the structure matrix of f , such that

f (x1, x2, · · · , xn) = Mf nn
i=1 xi ,

where Xi ∼ xi , i = 1, 2, · · · , n.

Consider the BCN described as follows:

X (t + 1) = f (X (t),U(t)),
Y (t) = h(X (t)),

(2)

where X = [X1,X2, . . . , Xn]T ∈ Bn, U = [U1,U2, . . . ,Um]T ∈ Bm ,
Y = [Y1,Y2, . . . ,Yp]T ∈ Bp are the state vector, the input vector and the output
vector respectively, B = {0, 1}.

Yifeng Li (CQNU) Decoupling of Boolean Control Networks August 13, 2024 8 / 101



Algebraic form of BNs

System (2) can be converted into the following algebraic form

x(t + 1) = Lu(t)x(t),
y(t) = Hx(t),

(3)

where x ∈ ∆2n , y ∈ ∆2p , L ∈ L2n×2m+n and H ∈ L2p×2n .
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State spaces of BNs

Consider the logical mapping g : Bn → Bn defined by

g : (X1,X2, · · · ,Xn) 7→ (Z1,Z2, · · · ,Zn). (4)

g is called a logical coordinate transformation if it is a bijection [1].

Let z = Tx be the algebraic form of the logical coordinate transformation (4),
where T ∈ L2n×2n is the structure matrix of g , x = nn

i=1xi , z = nn
i=1zi , Xi ∼ xi ,

Zi ∼ zi . Then, g is a logical coordinate transformation if and only if T is a
nonsingular logical matrix, i.e., a permutation matrix [1].

[1] D. Cheng, H. Qi and Z. Li, Analysis and control of Boolean networks: a
semi-tensor product approach. London: Springer, 2011.
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State spaces of BNs

Definition 1.2 [1]
Consider a BN. The state space X is defined as the set of all logical functions
of {X1,X2, · · · ,Xn}, denoted by Fl{X1,X2, · · · ,Xn}.
Let Z1,Z2, · · · ,Zr ∈ X . The subspace generated by {Z1,Z2, · · · ,Zr} is
defined as the set of logical functions of {Z1,Z2, · · · ,Zr}, denoted by
Z = Fl{Z1,Z2, · · · ,Zr}.
A subspace Z = Fl{Z1,Z2, · · · ,Zk} ⊂ X is called a regular subspace of the
dimension k, if there are Zk+1, zk+2, · · · ,Zn ∈ X , such that
g : (X1,X2, · · · ,Xn) 7→ (Z1,Z2, · · · ,Zn) is a logical coordinate
transformation.

Proposition 1.1 [1]
Let Z = Fl{Z1,Z2, · · · ,Zr} ⊂ X and its algebraic form is z = Mx , M ∈ L2r×2n .
Then Z is a regular subspace iff M12n = 2n−r 12r .

[1] Cheng, D., Qi, H. State-space analysis of Boolean networks. IEEE Transactions on Neural
Networks, 21(4), 584-594, 2010.
[2] Cheng D, Li Z, and Qi H, Realization of Boolean control networks, Automatica, 46(1):
62-69, 2010.Yifeng Li (CQNU) Decoupling of Boolean Control Networks August 13, 2024 11 / 101



State spaces of BNs [1-3]

Definition 1.3
A regular subspace Z1 = Fl{Z1,Z2, · · · ,Zk} ⊂ X is called an invariant
subspace of the dimension k, if there are Zk+1, zk+2, · · · ,Zn ∈ X , such that
g : (X1,X2, · · · ,Xn) 7→ (Z1,Z2, · · · ,Zn) is a logical coordinate transformation
and under Z the system can be expressed as

Z 1(t + 1) = f1(Z 1(t)),
Z 2(t + 1) = f2(Z (t)),

(5)

where Z 1 = {Z1,Z2, · · · ,Zk}, Z 2 = {Zk+1, zk+2, · · · ,Zn}.
Let Y = {Y1,Y2, · · · ,Yp} ∈ X . A regular subspace Z ⊂ X is called a
Y -friendly subspace if Yi ∈ Z, i = 1, 2, · · · , p. A Y -friendly subspace is
called a minimal Y -friendly subspace if there is no Y -friendly subspace of
smaller dimension than it.

[1] Cheng, D., Qi, H. State-space analysis of Boolean networks. IEEE Transactions on Neural
Networks, 21(4), 584-594, 2010.
[28] Cheng D, Li Z, and Qi H, Realization of Boolean control networks, Automatica, 46(1):
62-69, 2010.
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Vertex partitions

Definition 1.4
For a digraph G = (V , E), let Pl , l = 1, 2, · · · , µ be some subsets of V .

(i) {Pl}µl=1 is called a vertex partition of G, if ∪µl=1Pl = V and Pi ∩ Pj = ∅ for
any i 6= j .

(ii) A vertex partition {Pl}µl=1 is called an equal vertex partition (E-VP) if
|Pl | = |V |/µ for every l = 1, 2, · · · , µ.

(iii) A vertex partition {Pl}µl=1 is called a perfect vertex partition (P-VP) if for
each l there exists αl such that N (Pl ) ⊂ Pαl .

(iv) A vertex partition {Pl}µl=1 is called a concolorous vertex partition (C-VP) if
for any l ∈ {1, 2, · · · , µ}, all the vertices in Pl have the same color.

(v) CP-VP; CPE-VP.
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Vertex-colored State Transition Graph

Consider BCN

x(t + 1) = [L1, L2, · · · , L2m ]u(t)x(t),
y(t) = Hx(t).

B = (bij) =
∑2m

k=1 BLk is a adjacency matrix of the (STG) G of the BCN.
Use the output function to assign a color for every vertex of G in such way
that µ and λ are of the same color if and only if

Hδµ2n = Hδλ2n ,

then the constructed STG G is called the vertex-colored STG associated with
H and B.
Gi , denote the vertex-colored STG associated with H and Li .
G = ∪2m

i=1Gi .
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Example 1.1
Consider a BCN with

H = δ2[1 1 2 2 1 2 2 2],

L = [L1, L2] = δ23 [3 4 4 6 7 7 8 7 2 5 1 2 2 5 5 5].

Let y = δ1
2 , δ

2
2 , represent gray and white, respectively. Then based on L1, L2, L

and H, the vertex-colored STG G1, G2 and G can be obtained shown in Fig. 1.

{S1 = {δ1
8 , δ

2
8 , δ

5
8},S2 = {δ3

8 , δ
4
8 , δ

6
8 , δ

7
8 , δ

8
8}}.

Figure 1: CCP-VP
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DD dependent on decomposition
Consider the BCN with disturbances

x(t + 1) = Fu(t)ξ(t)x(t),
y(t) = Hx(t),

(6)

where x ∈ ∆2n , y ∈ ∆2p , F ∈ L2n×2n+q+m and H ∈ L2p×2n .

Definition 2.1[1]
Consider BCN (6). The DDP is solvable if we can find a feedback control

u(t) = Kx(t) (7)

and a logical coordinate transformation z = Tx such that under z coordinate frame the
closed-loop system becomes

z1(t + 1) = G1z1(t),
z2(t + 1) = G2ξ(t)z(t),

y(t) = Ez1(t),
(8)

where z = z1z2.

[1] D. Cheng, Disturbance decoupling of Boolean control networks, IEEE Trans. Automat.
Control, 56 (1), pp. 2-10, 2011.
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The basic idea proposed [1] is dividing into two steps:
Step 1, finding a Y -friendly subspace

z1(t + 1) = F1u(t)z1(t)z2(t)ξ(t),
z2(t + 1) = F2u(t)z1(t)z2(t)ξ(t),

y(t) = Gz1(t),
(9)

Step 2, designing a control, such that the complement coordinate sub-basis
z2 and the disturbances ξ can be deleted from the dynamics of z1.

z1(t + 1) = Fz1(t),
y(t) = Gz1(t),

(10)

[1] D. Cheng, Disturbance decoupling of Boolean control networks, IEEE Trans. Automat.
Control, 56 (1), pp. 2-10, 2011.
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Find a Y -friendly subspace z1

z1(t) = T0x(t),
y(t) = Gz1(t).

(11)

y(t) = Gz1(t) = GT0x(t) = Hx(t).
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Controller Design

Definition 2.2 [1]
Let

G = (g1, ..., gs) : Bn 7→ Bs (12)
be a logical mapping. The variable xi is said to be redundant if

gj (x1, ..., xi−1, 1, xi−1, ..., xn) = gi (x1, ..., xi−1, 0, xi−1, ..., xn)

for j = 1, 2, · · · , s.

Lemma 2.2 [1]
Let MG ∈ L2s×2n be the structure matrix of the logical mapping (12) and let an integer
r ≤ n be given. Split MG into 2r blocks as

MG = [M1,M2, · · · ,M2r ],

Then xr+1, · · · , xn are all redundant variables iff rankMi = 1, i = 1, 2, · · · , 2r .

[1] M. Yang, R. Li, T. Chu, Controller design for disturbance decoupling of Boolean control
networks, Automatica, 49 (1), pp. 273-277, 2013.
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Controller Design

Suppose that z1 is a r -dimensional Y -friendly subspace and under z

z1(t + 1) = Lu(t)z1(t)z2(t)ξ(t). (13)

The aim of DDP is to design state feedback controls such that z1 is an invariant
space. That is, z2 and ξ are redundant variables of (13).

Split L into 2m equal blocks as

L = [L1 L2 · · · L2m ],

and then split each Li into 2n equal block as

Li = [Li,1 Li,2 · · · Li,2n ].
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For each j ∈ [1, 2n], define

Λj = {k : ∃i ∈ [1, 2m] such that Col(Li,j) = {δk
2r }}.

and let
E k

j = {i : Col(Li,j) = {δk
2r }}.

For any j ∈ [1, 2r ], denote

Πj = ∩2n−r

l=1 Λ(j−1)2n−r+l .

Theorem 2.1 [1]
The DDP is solvable iff there exists a Y -friendly subspace Z 1 such that

Πj 6= ∅ for each j ∈ [1, 2r ].

Theorem 2.2 [1]
If the DDP is solvable, then the corresponding feedback control matrix is

K = δ2m [v1, v2, · · · , v2n ], where vs ∈ E kj
s , and kj ∈ Πj .

[1] M. Yang, R. Li, T. Chu, Controller design for disturbance decoupling of Boolean control
networks, Automatica, 49 (1), pp. 273-277, 2013.
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An algorithm for solving DDP dependent on decomposition
Step 1: Find a Y -friendly subspace z1.

Step 2: Check the conditions in Theorem 2.1.

Step 3: If the DDP is solvable, then using Theorem 2.2 design controllers.

Step 4: If the DDP is unsolvable, then go to Step 1 to find another
Y -friendly subspace z̃1.

[1] S. Wang and H. Li, New Results on the Disturbance Decoupling of Boolean Control
Networks, IEEE Control Systems Letters, vol. 5, no. 4, pp. 1157-1162, 2021
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Some work on the DDP of BNs

The idea has been successfully applied to solve the DDP of mix-valued logical
networks, switched BCNs and singular BNs.

D. Cheng, Disturbance decoupling of Boolean control networks, IEEE Trans.
Automat. Control., 56 (1), pp. 2-10, 2011.

J. Feng, Y. Li, S. Fu and H. Lyu, New method for disturbance decoupling of
Boolean networks, IEEE Transactions on Automatic Control,
67(9):4794-4800, 2022.
S. Wang and H. Li, New Results on the Disturbance Decoupling of Boolean
Control Networks, IEEE Control Systems Letters, vol. 5, no. 4, pp.
1157-1162, 2021
Y. Liu, B. Li, J. Lu, et al., Pinning control for the disturbance decoupling
problem of Boolean networks, IEEE Trans. Automat. Control., 62 (12), pp.
6595-6601, 2017.

M. Yang, R. Li, T. Chu, Controller design for disturbance decoupling of
Boolean control networks, Automatica, 49 (1), pp. 273-277, 2013.

Yifeng Li (CQNU) Decoupling of Boolean Control Networks August 13, 2024 26 / 101



Some work on the DDP of BNs

Y. Liu, B. Li, J. Lou, Disturbance decoupling of singular Boolean control
networks, IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 13 (6), pp. 1194-1200, 2016.

M. Meng and J. Feng, Topological structure and the disturbance decoupling
problem of singular Boolean networks, IET Control Theor. Appl., 8 (13), pp.
1247-1255, 2014.

L. Zhang, J. Feng, and X. Feng, Further results on disturbance decoupling of
mix-valued logical networks, IEEE Trans. Autom. Control, 59 (6), pp.
1630-1634, 2014.

B. Li, Y. Liu, K. I. Kou, L. Yu, Event-triggered control for the disturbance
decoupling problem of Boolean control networks, IEEE Transactions on
Cybernetics, 48 (9), pp. 2764-2769, 2018.

L. Li, A. Zhang, J. Lu, Disturbance decoupling problem of delayed Boolean
networks based on the network structure, IEEE Transactions on Circuits and
Systems II: Express Briefs, 70(3):1004-1008, 2023.
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Some work on the DDP of BNs

H. Li, Y. Wang, L. Xie, and D. Cheng, Disturbance decoupling control design
for switched Boolean control networks, Syst. Control Lett., 72, pp. 1-6, 2014.
Z. Liu, Y. Wang, Disturbance decoupling of mix-valued logical networks via
the semi-tensor product method, Automatica, 48 (8), pp. 1839-1844, 2012.

Y. Zou, J. Zhu, and Y. Liu, State-feedback controller design for disturbance
decoupling of Boolean control networks, IET Control Theory Applications,
11 (18), pp. 233-3239, 2017.

K. Sarda, A. Yerudkar, C. Vecchio, Disturbance decoupling control design for
Boolean control networks: a Boolean algebra approach, IET Control Theory
Applications, 14(16):2339-2347, 2020.
R. Zhao, J. Feng, B. Wang, R. Leone, Disturbance decoupling of Boolean
networks via robust indistinguishability method, Applied Mathematics and
Computation 457, 128220, 2023.
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Consider the BN with disturbances

x(t + 1) = Fξ(t)x(t),
y(t) = Hx(t),

(14)

where x ∈ ∆2n , y ∈ ∆2p , F ∈ L2n×2n+q and H ∈ L2p×2n .

Definition 2.1 [1]
Consider BN (14). The DDP is solvable if there exists a logical coordinate

transformation z = Tx such that under z coordinate frame the system becomes

z [1](t + 1) = G1ξ(t)z(t),
z [2](t + 1) = G2z [2](t),

y(t) = Ez [2](t),

(15)

where z = z [1]z [2].

[1] D. Cheng, Disturbance decoupling of Boolean control networks, IEEE Trans. Automat.
Control, 56 (1), pp. 2-10, 2011.

Yifeng Li (CQNU) Decoupling of Boolean Control Networks August 13, 2024 29 / 101



In the traditional control theory, the DDP is independent of any system
decomposition [1].

For BNs, whether the system decomposition is necessary to ensure that the
output y is unaffected by the disturbance ξ ?

[1] W. Wonham, Linear Multivariable Control: A Geometric Aproach,2nd ed. Springer, Berlin,
1979.
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Example
Consider a BN with algebraic form

x(t + 1) = Fξ(t)x(t),
y(t) = Hx(t),

(16)

where F =δ4[2, 3, 2, 3, 4, 4, 2, 2], H =δ2[1, 2, 2, 2].

Figure 2: The vertex-colored state transition graph of system (16)
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DD independent on decomposition

Definition 2.3 ODD [1]
Consider a BN with disturbances. The original disturbance decoupling is said to be
implemented if, for each initial state X (0) ∈ Dn, the output sequence {Y (s)}+∞s=0
is the same for every disturbance sequence {ξ(s)}+∞s=0 with each ξ(s) ∈ Dn.

This definition does not address the system decomposition, which is more
general.

[1] Y. Li, J. Zhu, On disturbance decoupling problem of Boolean control networks, Asian J.
Control, 21, pp. 2543-2550, 2019.
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Algebraic conditions for the ODD of BNs

Theorem 2.3 [1]

For the BN
x(t + 1) = Fξ(t)x(t),

y(t) = Hx(t),
(17)

the ODD is implemented, i.e., the output vector y(t) is unaffected by the
disturbances for any t and any initial state x(0), if and only if

P1 := HF1 = HF2 = · · · = HF2q ,

P2 := P1F1 = P1F2 = · · · = P1F2q ,
...

Pt+1 := PtF1 = PtF2 = · · · = PtF2q ,
...

(18)

where F = [F1,F2, · · · ,F2q ].
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Algebraic conditions for ODD of BNs

Assume that the output vector y(t) is unaffected by the disturbances. A
straightforward computation shows that

y(1) = Hx(1) = HFξ(0)x(0) = HFi x(0)

as ξ(0) = δi
2q , i = 1, 2, . . . , 2q. Since y(1) is undisturbed, we have

HF1 = HF2 = · · · = HF2q =: P1.

Furthermore, we have

y(2) = Hx(2) = HFξ(1)Fξ(0)x(0) = P1Fi x(0)

as the disturbance vector ξ(0) = δi
2q , i = 1, 2, . . . , 2q. Since y(2) is undisturbed,

we have
P1F1 = P1F2 = · · · = P1F2q =: P2.
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Algebraic conditions for ODD of BNs

Repeating this argument yields

y(t +1)=HFξ(t)Fξ(t−1) · · ·Fξ(0)x(0)=PtFi x(0)

as the disturbance vector ξ(0) = δi
2q , i = 1, 2, . . . , 2q. Since the y(t + 1) is

undisturbed, we have

PtF1 = PtF2 = · · · = PtF2q =: Pt+1

for every t ≥ 1. So all the equalities in (18) hold.
Conversely, from (18), it follows that

y(t) = HFξ(t−1) · · ·Fξ(0)x(0)=Ptx(0), ∀ t ≥ 1,

which implies that y(t) is undisturbed for any t and any initial state x(0).
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Algebraic conditions for the ODD of BNs

Corollary 2.1
The ODD of the BN is implemented if and only if

P1 := HF1 = HF2 = · · · =HF2q ,

P2 := P1F1 = P1F2 = · · · = P1F2q ,
...

Pµ := Pµ−1F1 = Pµ−1F2 = · · · =Pµ−1F2q ,

(19)

where µ is some positive integer.

Theorem 2.3;[1]
The ODD of the BN is implemented if and only if

HB i ∈L2p×2n , i =1, 2, . . . , µ, (20)

where µ is some positive integer and B =
∑2q

i=1 BFi .

[1]Y. Li, J. Zhu, On disturbance decoupling problem of Boolean control networks, Asian J.
Control, 21, pp. 2543-2550, 2019.
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Partition conditions

Definition 2.4
A vertex partition S = {Sl}µ

l=1 of V is called a concolorous perfect vertex
partition (CP-VP) if

(i) for any l ∈ {1, 2, · · · , µ}, all the vertices in Sl have the same color (output),
(ii) for any l ∈ {1, 2, · · · , µ}, there exists an αl such that N (Sl ) ⊂ Sαl .

Figure 3: CP-VP
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Partition conditions

Definition 2.5
A vertex partition S = {Sl}µl=1 of V is called a concolorous perfect equal

vertex partition (CPE-VP) if S = {Sl}µl=1 of V is a CP-VP and an equal
vertex partition.

Figure 4: CPE-VP
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Partition condition for the DD of BNs

Remark
From the definition of CP-VP and CPE-VP, a vertex partition is a CPE-VP

must be a CP-VP.

Figure 5: the relationship between CP-VP and CPE-VP

Yifeng Li (CQNU) Decoupling of Boolean Control Networks August 13, 2024 39 / 101



Graphic condition for the ODD of BNs

Theorem 2.4 [1]

The ODD of the BN

x(t + 1) = Fξ(t)x(t),
y(t) = Hx(t),

(21)

is implemented if and only if the vertex-colored state transition graph of
the BN has a CP-VP S = {Sl}µl=1, where µ is some positive integer.

Remark
Compared with the algebraic conditions, the partition condition is simply and

intuitively.

[1] Y. Li, J. Zhu, B. Li, Y. Liu and J. Lu, A Necessary and Sufficient Graphic Condition for the
Original Disturbance Decoupling of Boolean Networks, IEEE Transactions on Automatic Control,
vol. 66, no. 8, pp. 3765-3772, 2021.
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Figure 6: the vertex-colored state transition graph
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Graphic condition for ODD

Proof. (Sufficiency) Denote byP={Pi}s
i=1 a CP-VP of the vertex-colored state

transition graph of the BN. Since P is perfect, for any l0 = 1, 2, . . . , s, there exist
l1, l2, . . . , lt , . . . such that

N(Pl0)⊂Pl1 , N(Pl1)⊂Pl2 , . . . ,N(Plt−1)⊂Plt , . . . . (22)

Since P is concolorous, all the vertices in each Plk correspond to the same
output, i.e., for any given Plk there exists clk such that

Hδj
2n = δ

clk
2r , ∀ j ∈ Plk . (23)

Let the initial state x(0) = δk0
2n , where k0 ∈ Pl0 . For any given disturbance

sequence w(0),w(1),w(2), . . . , denote the system state at time t by x(t) = δkt
2n ,

t ≥ 0. By (22), we have kt ∈ Plt . So Hδkt
2n = δ

clt
2r due to (23). Thus we conclude

that the output sequence {δcli
2r }+∞i=1 is independent of the disturbance sequence.

Yifeng Li (CQNU) Decoupling of Boolean Control Networks August 13, 2024 42 / 101



(Necessity). It follows from the algebraic form of the BN that
y(s)=HLw(s−1)Lw(s−2) · · · Lw(1)Lw(0)x(0). (24)

Since the original disturbance decoupling is implemented, y(s) is the same for
any disturbances w(0), w(1),. . . ,w(s − 1). Thus, letting w(t) = δit

2m for any
t ≥ 0, we can see that

HLis−1Lis−2 · · · Li1 Li0 x(0) (25)
is the same for any 1 ≤ i1, i2, . . . , is−1 ≤ 2m. By (25) and the arbitrariness of x(0),
we have

HLis−1Lis−2 · · · Li1 Li0 = HLs
1 (26)

for any 1 ≤ i1, i2, . . . , is−1 ≤ 2m and s ≥ 0. We write

Oµ :=


H

HL1
HL2

1
...

HLµ−1
1

=


δ2r [h11 h12 . . . h12n ]
δ2r [h21 h22 . . . h22n ]
δ2r [h31 h32 . . . h32n ]

...
δ2r [hµ1 hµ2 . . . hµ2n ]

 . (27)

There exists µ∗ such that

HLµ1 ∈ {H, HL1, . . . ,HLµ
∗−1

1 }, ∀ µ ≥ µ∗. (28)
The matrix Oµ∗ is just the observability matrix.
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Construct a vertex partition P = {Pl}ηl=1 of V following such a way that a and b
belong to the same class of partition P if and only if Cola(Oµ∗ ) =Colb(Oµ∗ ).
From the construction of P = {Pl}ηl=1, for any a, b ∈ Pl , we have
Cola(H) = Colb(H), which implies that Hδa

2n = Hδb
2n , i.e., a and b have the same

color. So the vertex partition P = {Pl}ηl=1 is concolorous.

We claim that the vertex partition P = {Pl}ηl=1 is also perfect, i.e., for any class
Pl , its out-neighborhood N (Pl ) is a subset of some class Pαl . To prove it, for
arbitrary a, b ∈ Pl , we consider all the out-neighbors of a and b. From the first
equation of (21), it follows that the out-neighborhoods can be written as

N (a) = {ap | δ
ap
2n = Lpδ

a
2n , p = 1, 2, · · · 2m.}, (29)

N (b) = {bq | δ
bq
2n = Lqδ

b
2n , q = 1, 2, · · · 2m.}. (30)
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For any a, b ∈ Pl , it follows from the construction of P that

HLt
1δ

a
2n = HLt

1δ
b
2n , ∀ t = 1, 2, . . . . (31)

Applying (26) to (31), we have

HLt−1
1 Lpδ

a
2n = HLt−1

1 Lqδ
b
2n , ∀ t = 1, 2, . . . . (32)

Using (29) and (30) to (32) yields

HLt−1
1 δ

ap
2n = HLt−1

1 δ
bq
2n , ∀ t = 1, 2, . . . , (33)

whichimplies that ap and bq are in the same class of P. By the arbitrariness of a
and b in Pl , we conclude that there exists αl such that Pl ⊂ Pαl .
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Partition condition for the DD of BNs

Theorem 2.5 [1]
There exists a logical coordinate transformation z = Tx such that the BN

x(t + 1) = Fξ(t)x(t),
y(t) = Hx(t),

(34)

becomes
z [1](t + 1) = G1ξ(t)z(t),
z [2](t + 1) = G2z [2](t),

y(t) = Ez [2](t),

(35)

if and only if the vertex-colored state transition graph G of BN has a
CPE-VP S = {Si}2n−s

i=1 with |Si | = 2s .

[1] Y. Li, J. Zhu, B. Li, Y. Liu and J. Lu, A Necessary and Sufficient Graphic Condition for the
Original Disturbance Decoupling of Boolean Networks, IEEE Transactions on Automatic Control,
vol. 66, no. 8, pp. 3765-3772, 2021.
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The relationship between DD and ODD

Remark
From the above two Theorems, if one system is DD, the system must be

ODD. However, the converse is not true.

Figure 7: the relationship between DD and ODD
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Algorithm

We provided an algorithm for computing CP-VP in [1]. (1). compute the
finest P-VP; (2). check it to see if it’s a CP-VP.
For the disturbance decoupling dependent on decomposition, one needs to
search for an E-VP P satisfying K @ P @ C, where K is the finest CP-VP
obtained from Algorithm 2 in [1] and C is the coarsest C-VP corresponding to
the assigned colors of the vertices.

[1] Y. Li, J. Zhu, B. Li, Y. Liu and J. Lu, A Necessary and Sufficient Graphic
Condition for the Original Disturbance Decoupling of Boolean Networks, IEEE
Transactions on Automatic Control, vol. 66, no. 8, pp. 3765-3772, 2021.
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An illustrative example

Example
Consider the BN with disturbance described by

x1(t + 1) =ξ(t) ∧ x1(t) ∧ (x2(t)→ x3(t)),

x2(t + 1) =ξ(t) ∧ [x1(t) ∨ ¬x1(t) ∧ (x2(t)→ x3(t))]∨
¬ξ(t) ∧ [x1(t) ∧ (x2(t)→ x3(t))],

x3(t + 1) =ξ(t) ∧ ¬x1(t) ∧ x2(t) ∧ ¬x3(t) ∨ ¬ξ(t)∧
[x1(t) ∧ (x2(t)→ x3(t)) ∨ ¬x1(t) ∧ (x2(t)↔ x3(t))],

y(t) =x1(t) ∨ ¬x1(t) ∧ x2(t) ∧ x3(t),

(36)

where x1, x2, x3, ξ, y ∈ ∆2. Let x = x1x2x3. Then the algebraic form of the system (36) is

x(t + 1) = Fξ(t)x(t),
y(t) = Hx(t)

with F = δ8 = [2, 6, 2, 2, 6, 7, 6, 6, 5, 8, 5, 5, 7, 8, 8, 7] and H = δ2[1, 1, 1, 1, 1, 2, 2, 2].
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An illustrative example

The vertex-colored STG is shown in the following, we can easily see that the
ODD is implemented and the vertex-colored state transition graph has a CP-VP
S = { S1 = {1, 3, 4}, S2 = {2, 5}, S3 = {6, 7, 8}}.

Figure 8: the vertex-colored state transition graph
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How to design controller?

How to solve DDP with low computational complexity?
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System model
Consider the BCN described as follows:

X1(t + 1) = f1(X1(t), . . . ,Xn(t),U1(t), . . . ,Um(t)),
...

Xn(t + 1) = fn(X1(t), . . . ,Xn(t),U1(t), . . . ,Um(t)),

Yi (t) = hi (X1(t), . . . ,Xn(t)), i = 1, 2 · · · ,m,

(37)

where the input and the output are assumed to have the same number of channels
for convenience, the state vector is X = [X1,X2, . . . ,Xn]T ∈ Bn, the control vector
is U = [U1,U2, . . . ,Um]T ∈ Bm and the output vector is
Y = [Y1,Y2, . . . ,Ym]T ∈ Bm. BCN (37) can be expressed in the algebraic form
(Cheng & Qi, 2010) as follows:{

x(t + 1) = Lu(t)x(t),

yi (t) = Hix(t), i = 1, 2, · · · ,m,
(38)

where L = [L1, L2, . . . , L2m ] ∈ L2n×2m+n , Lk = Lδk
2m ∈ L2n×2n , Hi ∈ L2×2n ,

x = nn
i=1xi = Cn(X ), u = nm

i=1ui = Cm(U), and yi = C2(Yi ).
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Definition 3.1 [1-3] IOD dependent on decomposition
The BCN (38) with inputs and outputs having the same cardinality, m, is said to be
input-output decoupled if there exists a logical coordinate transformation z = Tx such
that, under z coordinate, (38) can be decomposed into the following form

z1(t + 1) = F1u1(t)z1(t),
...
zm(t + 1) = Fmum(t)zm(t),

zm+1(t + 1) = Fm+1u(t)z(t),

y1(t) = E1z1(t),
...
ym(t) = Emzm(t),

(39)

where u = u1u2 · · · um ∈ L2m , z = z1z2 · · · zm+1 ∈ L2n , zl ∈ L2nl , Fl ∈ L2nl×2nl+1 ,
l = 1, 2, · · · ,m + 1, n = n1 + n2 + · · ·+ nm+1, and Ei ∈ L2×2ni , i = 1, 2, · · · ,m.

[1] S. Fu, J. Zhao, and J. Wang, Input-output decoupling control design for switched Boolean
control networks, Journal of the Franklin Institute, vol. 355, no. 17, pp. 8576-8596, 2018.
[2] J. Pan, J. Feng, J. Yao, and J. Zhao, Input-output decoupling of Boolean control networks,
Asian Journal of Control, vol. 20, no. 6, pp. 2185-2194, 2018.
[3] D. Cheng, H. Qi and Z. Li, Analysis and control of Boolean networks: a semi-tensor product
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Definition 3.2 [1] IOD free of decomposition

The BCN (37) with inputs and outputs having the same cardinality, m, is said to
be input-output decoupled if for every index i ∈ [1,m] and every initial state
X (0) ∈ Bn, if U(t) and Û(t), t ∈ Z+, are two input sequences characterized by
the fact that their ith entries coincide at every time instant, i.e.

Ui (t) = Ûi (t), ∀ t ∈ Z+,

then theoutput sequences Y (t) and Ŷ (t), t ∈ Z+, generated by BCN (37)
corresponding to X (0), U(t) and Û(t), t ∈ Z+, respectively, satisfy

Yi (t) = Ŷi (t), ∀ t ∈ Z+.

[1] M. Valcher, Input/output decoupling of boolean control networks. IET Control Theory &
Applications, vol.11, no.13, pp: 2081-2088, 2017.
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Remark 3.1
According to Definition 3.1, if a BCN is input-output decoupled, then the BCN
must be decomposed into form (39) under a logical coordinate transformation,
but this constraint is removed in Definition 3.2. That is to say, compared with
Definition 3.1, Definition 3.2 is more general.

Besides, Definition 3.2 captures the original meaning of input-output decoupling,
i.e., each output channel can only be possibly controlled by one input channel,
which does not related to any system decomposition. Actually, it is possible to
construct a BCN which is input-output decoupled but can not be decomposed
into form (39).
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An illustrative example

Example

consider the BCN

X1(t + 1) = U1(t) ∧ X1(t),
X2(t + 1) = (¬U1(t) ∧ X1(t)) ∨ X2(t) ∨ U2(t),

Y1(t) = X1(t),
Y2(t) = X1(t) ∨ X2(t),

(40)

where X1,X2,U1,U2 ∈ B, (X1,X2)T is the state vector, (U1,U2)T is the input
vector, (Y1,Y2)T is the output vector. It is easy to check that

Y1(t) = U1(t−1)∧U1(t−2)∧. . .∧U1(0)∧X1(0),

Y2(t) = U2(t−1)∨U2(t−2)∨. . .∨U2(0)∨X1(0) ∨X2(0).

So BCN (40) is input-output decoupled. However, it is impossible to decompose
BCN (40) into two independent subsystems to realize input-output decoupling.
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An illustrative example
Indeed, otherwise, there is a logical coordinate transformation Z = φ(X ) such

that, in the Z coordinate frame, BCN (40) becomes

Z1(t + 1) = f1(Z1(t),U1(t)),
Z2(t + 1) = f2(Z2(t),U2(t)),

Y1(t) = h1(Z1(t)),
Y2(t) = h2(Z2(t)).

(41)

All the possible expressions of h2(Z2) are

h2(Z2)=1, h2(Z2)=0, h2(Z2)=Z2, h2(Z2)=¬Z2. (42)

When Y2 = h2(Z2) = 1 or Y2 = h2(Z2) = 0, all the possible states yield the same
Y2. When Y2 = h2(Z2) = Z2 or Y2 = h2(Z2) = ¬Z2, a half of states must have
output Y2 = 1 and the other half must have output Y2 = 0. That is to say, the
number of states that have output Y2 = 0 is 0 or 2 or 4. However, in the X
coordinate frame, by

Y2 =X1∨X2 =

{
0, (X1,X2) = (0, 0),
1, otherwise, (43)

we conclude that only one state has output Y2 = 0. A contradiction.
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Algebraic and graphic conditions for IOD

Consider BCN (38) {
x(t + 1) = Lu(t)x(t),

yi (t) = Hix(t), i = 1, 2, · · · ,m,

If we assign the ith input channel as ui = δb
2 (b = 1, 2), then BCN (38) becomes

x(t + 1)=Lu1(t) · · · ui−1(t)δb
2 ui+1(t) · · · um(t)x(t). (44)

Similarly, we get an adjacency matrix of the STG of (44) as follows:

Mib =
1

2m−1 L12i−1δb
2 12m−i . (45)

Denote the vertex-colored STG associated with Hi and Mib by Gib, b = 1, 2.
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Algebraic and graphic conditions for IOD

Theorem 3.1 [1]

BCN (38) is input-output decoupled according to Definition 2.2 if and only if for
every i = 1, 2, . . . ,m, every t ≥ 1 and every b1, b2, . . . , bt ∈ {1, 2}, the matrix

Hi Mibt · · ·Mib1 ∈ L2×2n ,

where Mibs , s = 1, 2, · · · , t, defined in (45).

Theorem 3.2 [1]

BCN (38) is input-output decoupled according to Definition 2.2 if and only if for
every i ∈ [1,m], Gi1 and Gi2 have a common CP-VP.

[1] Y. Li and J. Zhu, Necessary and sufficient vertex partition conditions for input-output
decoupling of Boolean control networks, Automatica, vol. 137, p. 110097, 2022.
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Algebraic and graphic conditions for IOD

Theorem 3.3 [1]

BCN (38) is input-output decoupled according to Definition 2.1 if and only if
(I) for every i ∈ [1,m], Gi1 and Gi2 have a common CPE-VP denoted by
S i = {S i

l }2ni
l=1;

(II) S1···m := S1∧̄S2∧̄ · · · ∧̄Sm is an equal vertex partition with |S1···m| = 2Nm .

Remark 3.2
By using the vertex partition conditions, Theorems 3.2 and 3.3 clearly reveal the
essential difference between Definition 3.1 and Definition 3.2. Definition 3.2 is
equivalent to the existence of some CP-VPs, but Definition 3.1 further requires
that the CP-VPs and their greatest common refinement are equal partitions.

[1] Y. Li and J. Zhu, Necessary and sufficient vertex partition conditions for input-output
decoupling of Boolean control networks, Automatica, vol. 137, p. 110097, 2022.
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An illustrative example

Example

Consider the following BCN, which is a reduced sub-network of signal
transduction networks (Li, Assmann, & Albert, 2006):

X1(t + 1) =U1(t) ∧ ¬X3(t) ∧ U2(t),

X2(t + 1) =U2(t),

X3(t + 1) =¬(X2(t) ∨ U1(t)) ∧ U2(t),

(46)

where X1, X2, X3 ∈ B are state variables denoting Atrboh, Ros and ABL1,
respectively, U1, U2 ∈ B are the external inputs. The output equations are given
by

Y1(t) =[X1(t) ∧ (X2(t)→ X3(t))] ∨ ( ¬X1(t) ∧ ¬X2(t) ∧ X3(t)),

Y1(t) =[X1(t) ∧ (X2(t)→ X3(t))] ∨ (¬X1(t) ∧ ¬X2(t)),
(47)

where Y1,Y2 ∈ B.
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An illustrative example

Logical equations (59) and (68) can be converted into the algebraic form (38)
with x ∈ L8, u ∈ L4, y ∈ L2,

L =δ8[6 2 6 2 6 2 6 2 8 8 8 8 8 8 8 8
6 6 5 5 6 6 5 5 8 8 8 8 8 8 8 8],

H1 =δ2[1 2 1 1 2 2 1 2],

H2 =δ2[1 2 1 1 2 2 1 1].

Let L = [L1, L2, L3, L4] with each Li ∈ L8×8. From L, H1, H2, we have

M11 =
1
2 (L1 + L2),M12 =

1
2 (L3 + L4),

M21 =
1
2 (L1 + L3),M22 =

1
2 (L2 + L4).

Let y1 = δ1
2 (δ2

2) represent gray (white), y2 = δ1
2 (δ2

2) represent green (white).
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An illustrative example

Figure 9: the vertex-colored STG G11, G12, G21, G22.

G11 and G12 have a common CP-VP as P1 = {{1, 3, 4, 7}, {2, 5, 6, 8}};
G21 and G22 have a common CP-VP as P2 = {{1, 3, 4, 7, 8}, {2, 5, 6}}.
According to Theorem 2.2, the input-output decoupling defined by Definition 2.2
of BCN (59) is realized. However, G21 and G22 have no common CPE-VP. Hence,
by Theorem 2.3, the BCN is not input-output decoupling according to Definition
2.1.
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Input-output decoupling;
Block decoupling [1,2];
Morgan problem [3];

[1] Y. Yu, J. Feng, J. Pan, and D. Cheng, Block decoupling of Boolean control
networks, IEEE Transactions on Automatic Control, 64(8), pp. 3129-3140, 2018.

[2] L. Wang, Y. Li, and J. Zhu, On block-decoupling of Boolean control networks,
International Journal of Control, Automation, and Systems 21(1), pp.40-51, 2023.

[3] S. Fu, Y. Wang, and D. Cheng, et al. Morgan’s problem of Boolean control
networks, Control Theory Technol. 15, 316-326 (2017).
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Some work on the IOD of BCNs

S. Fu, J. Zhao, and J. Wang, Input-output decoupling control design for
switched Boolean control networks, Journal of the Franklin Institute, vol.
355, no. 17, pp. 8576-8596, 2018.

J. Pan, J. Feng, J. Yao, and J. Zhao, Input-output decoupling of Boolean
control networks, Asian Journal of Control, vol. 20, no. 6, pp. 2185-2194,
2018.

M. Valcher, Input/output decoupling of Boolean control networks. IET
Control Theory & Applications, vol.11, no.13, pp: 2081-2088, 2017.

Y. Li and J. Zhu, Necessary and sufficient vertex partition conditions for
input-output decoupling of Boolean control networks, Automatica, vol. 137,
p. 110097, 2022.
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System decomposition w.r.t. inputs

Definition 4.1 [1]
Consider the BCN

x(t + 1) = Lu(t)x(t), (48)

where L ∈ L2n×2m+n . The BCN is said to be decomposable with respect to inputs
with order n − s, if there exists a logical coordinate transformation
zi = gi (x1, ..., xn)(i = 1, 2, ..., n) such that (48) becomes

z1(t) = G1u(t)z(t)),
z2(t) = G2z2(t),

(49)

where z1 = z1z2 · · · zs , z2 = zs+1zs+2 · · · zn.

[1] Y. Zou, J. Zhu, System decomposition with respect to inputs for Boolean control networks,
Automatica, 50(4),1304-1309, 2014.
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Theorem 4.1 [1]
Consider the BCN

x(t + 1) = Lu(t)x(t). (50)
The BCN is decomposable with respect to inputs with order n− s if and only if the state
transition graph has a PEVP {Pi}2n−s

i=1 with each |Pi | = 2s

Remark 4.1
A Vertex Set Uniting Algorithm was proposed in [1] for finding a PEVP.
A decomposition with respect to inputs of maximum order is called the maximum
decomposition with respect to inputs.
Assume that the largest uncontrollable subspace is a regular subspace.

z1(t) = G1u(t)z(t)),
z2(t) = G2z2(t),

(51)

is called the normal controllable form [2].

[1] Y. Zou, J. Zhu, System decomposition with respect to inputs for Boolean control networks,
Automatica, 50(4),1304-1309, 2014.
[2] D. Cheng, Z. Li, and H. Qi, Realization of Boolean control networks, Automatica, vol. 46,
no. 1, pp. 62-69, 2010.
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Observability Decomposition

The observability decomposition is one of the fundamental issues in the
control system theory, which divides a system into the observable and the
unobservable subsystems [1,2].

[1] R. Kalman, Mathematical description of linear dynamical systems, SIAM J. Appl. Math.,
vol. 1, no. 2, pp.152-192, 1963.
[2] Y. Kawano and Ü. Kotta, Single-experiment observability decomposition of discrete-time
analytic systems, Syst. Control Lett., vol. 97, pp. 193-199, 2016.
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System Model

Consider the BCN

X (t + 1) = f (X (t),U(t)),
Y (t) = h(X (t)),

(52)

where X = [X1,X2, . . . , Xn]T ∈ Bn, U = [U1,U2, . . . ,Um]T ∈ Bm ,
Y = [Y1,Y2, . . . ,Yp]T ∈ Bp.

Algebraic form of (52)[1].

x(t + 1) = Lu(t)x(t),
y(t) = Hx(t),

(53)

where x ∈ ∆2n , y ∈ ∆2p , L ∈ L2n×2m+n+q and H ∈ L2p×2n .

[1] D. Cheng, H. Qi, and Z. Li, Analysis and control of Boolean control networks: a semi-tensor
product approach, Springer, London, 2011.
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Background

the normal observable form [1]

regularity of the largest unobservable subspace
there exists an expression of (2) which have largest unobservable subspace z2

as
z [1](t + 1) = G1u(t)z [1](t),

z [2](t + 1) = G2u(t)z(t),

y(t) = Mz [1](t).

(54)

the maximum decomposition w.r.t. outputs [2]
without regularity hypothesis
does not involve the observability of the remaining part

[1] D. Cheng, Z. Li, and H. Qi, Realization of Boolean control networks, Automatica, vol. 46,
no. 1, pp. 62-69, 2010.
[2] Y. Zou and J. Zhu, Graph theory methods for decomposition w.r.t. outputs of Boolean
control networks, J. Syst. Sci. and Complex., vol. 30, no. 3, pp. 519-534, 2017.
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Problem Statement

Definition 4.2 [1] (Observability)
Consider a BCN. Two states x and x̄ , are said to be indistinguishable, if for

any input sequence {u(0), u(1), · · · , }, the two output sequences {y(0), y(1), · · · }
and {ȳ(0), ȳ(1), · · · }, corresponding to the initial states x(0) = x and x(0) = x̄
respectively are same; otherwise they are distinguishable.

The BCN is said to be observable if any two distinct states are distinguishable.

[1] Y. Zhao, H. Qi, and D. Cheng, Input-state incidence matrix of Boolean control networks and
its applications, Syst. Control Lett., vol. 59, no. 12, pp. 767-774, 2010.
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Problem Statement

Definition 4.3 [1] (Observability decomposition)
Consider a BCN. The observability decomposition is said to be realizable if

there is a coordinate transformation z = Tx such that under the z coordinate
frame the BCN becomes

z [1](t + 1) = G1u(t)z [1](t),
z [2](t + 1) = G2u(t)z(t),

y(t) = Mz [1](t),

(55)

and z [1] subsystem is observable by Definition 2.1, where z [1]∈∆2n1 , z [2]∈∆2n2 ,
z =z [1]z [2].

[1] Y. Li, J. Zhu, Observability decomposition of Boolean control networks. IEEE Trans.
Autom. Control, 68(2):1267-1274, 2023.
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Main Results

Proposition 4.1
Indistinguishable relation on V = {1, 2, · · · , 2n} is an equivalence relation,

which induces an associated partition denoted by P = {Pl}s
l=1 of V , where each

Pl is an equivalence class, that is, for any l , for any two vertices p, q ∈ Pl , p, q are
indistinguishable and for any l1 6= l2, for any p ∈ Pl1 , q ∈ Pl2 , p, q are
distinguishable.

Proposition 4.2
The partition P = {Pl}s

l=1 induced by the indistinguishable relation on
V = {1, 2, · · · , 2n} is the coarsest common CP-VP of G1, · · · , G2m .

[1] Y. Li, J. Zhu, Observability decomposition of Boolean control networks. IEEE Trans.
Autom. Control, 68(2):1267-1274, 2023.
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Main Results

Corollary 4.1
BCN (53) is observable if and only if the coarsest common CP-VP of G1, · · · ,

G2m is the single point partition.

Figure 10: CCP-VP
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Main Results

Theorem 4.1 [1]
Assume that n1 > 0 and n1 + n2 = n. Then BCN (53) has an observability

decomposition form
z [1](t + 1) = G1u(t)z [1](t),
z [2](t + 1) = G2u(t)z(t),

y(t) = Mz [1](t),

where z [1]∈∆2n1 , z [2]∈∆2n2 , z =z [1]z [2] if and only if
(I) G1, · · · , G2m have a common CPE-VP P = {Pl}2n1

l=1 with |Pl | = 2n2 ;
(II) P is the coarsest common CP-VP.

Corollary 4.2 [1]
BCN (53) has an observability decomposition if and only if the coarsest

common CP-VP of G1, · · · , G2m is an E-VP that is not the single point partition.

[1] Y. Li, J. Zhu, Observability decomposition of Boolean control networks. IEEE Trans.
Autom. Control, 68(2):1267-1274, 2023.
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An algorithm
Define

Γ0 = {H},
Γµ = {HLjµ · · · Lj1 | jµ, · · · , j1 ∈ [1, 2m]},

(56)

where µ = 1, 2, . . . . For notational ease, we also use Γµ to denote the matrix
consisting of its elements and arranging in a column. For instance,

Γ0 = H, Γ1 =


HL1
HL2

...
HL2m

 , Γ2 =


HL1L1
HL1L2

...
HL2m L2m

 .
Construct a matrix as

O =


Γ0
Γ1
...

Γ2n−1

 . (57)
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An algorithm

Proposition 4.3 [1]
Construct a vertex partition P = {Pl}s

l=1 of V = {1, 2, · · · , 2n} following
such a way that

∀ a, b ∈ Pl ⇔ Cola(O) = Colb(O). (58)

Then, P is the coarsest common CP-VP of G1, · · · , G2m .

[1] Y. Li, J. Zhu, Observability decomposition of Boolean control networks. IEEE Trans.
Autom. Control, 68(2):1267-1274, 2023.
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An algorithm

Based on Proposition 4.3, we give the following algorithm.

Algorithm 4.1 [1]
Consider BCN (52).
Step 1. Compute the algebraic form (53).
Step 2. Compute (57) and construct the coarsest common CP-VP P = {Pl}s

l=1
of G1, · · · , G2m as (58).
Step 3.

If P is a single point set partition, by Corollary 4.1, BCN (53) is observable;
otherwise BCN (53) is unobservable.
If P is an E-VP that is not a single point set partition, by Corollary 4.2, the
observability decomposition of BCN (53) is realizable; otherwise it is not.

[1] Y. Li, J. Zhu, Observability decomposition of Boolean control networks. IEEE Trans.
Autom. Control, 68(2):1267-1274, 2023.
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An illustrative example

Example
Consider a simple cell apoptosis Boolean model expressed as follows:

X1(t + 1) =¬X2(t) ∧ U(t),

X2(t + 1) =¬X1(t) ∧ X2(t),

X3(t + 1) =X2(t) ∨ U(t),

(59)

where X1, X2, X3, U ∈ B represent inhibitor of apoptosis proteins (IAP) , active caspase
3 (C3a), active caspase 8 (C8a) and Fas ligand respectively.

The output equation is given by

Y (t)=[X1(t) ∧ (X2(t) ∨ X3(t))] ∨ (¬X1(t) ∧ ¬X2(t) ∧ X3(t)). (60)

By using STP of matrices, BCN (59) and (68) can be converted into the algebraic form
(53) with L = [L1 L2],

L =δ8[7 7 3 3 5 5 3 3 7 7 8 8 5 5 8 8],

H =δ2[1 1 1 2 2 2 1 2].
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An illustrative example

Let y = δ1
2 (δ2

2) represent gray (white). Then the vertex-colored STG G1 and
G2 are shown in Fig. 2.

Figure 11: the vertex-colored STG G1 and G2.
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An illustrative example

With a straightforward computation, we have

O =



δ2[1 1 1 2 2 2 1 2]
δ2[1 1 1 1 2 2 1 1]
δ2[1 1 2 2 2 2 2 2]
δ2[1 1 1 1 2 2 1 1]
δ2[2 2 2 2 2 2 2 2]

...
δ2[1 1 1 1 2 2 1 1]
δ2[2 2 2 2 2 2 2 2]


. (61)

By Proposition 4.3, we obtain the coarsest common CP-VP of G1 and G2
P = {P1,P2,P3,P4}, where P1 = {1, 2},P2 = {3, 7},P3 = {4, 8},P4 = {5, 6}.
Since P is an E-VP that is not a single point set partition, the observability
decomposition of the BCN is realizable.
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An illustrative example

By P, one can construct a logical coordinate transformation to realize the
observability decomposition. Omitting the computation process, we obtain the
observability decomposition form

z[1](t + 1) =δ4[2 2 2 4 2 3 3 4]u(t)z[1](t),

z[2](t + 1) =δ2[2 2 1 1 1 1 1 1 2 2 2 2 2 2 1 1]u(t)z(t),

y(t) =δ2[1 1 2 2]z[1](t),

whose logical form is

Z1(t + 1) = [U(t) ∧ (Z1(t) ∨ Z2(t))] ∨ (¬U(t)∧
Z1(t) ∧ Z2(t)),

Z2(t + 1) = ¬U(t) ∧ (Z1(t)∨̄Z2(t)),
Z3(t + 1) = [U(t) ∧ (Z1(t) ∧ ¬Z2(t) ∨ ¬Z1(t))]∨

(¬U(t) ∧ ¬Z1(t) ∧ ¬Z2(t)),
Y (t) = Z1(t).
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Kalman decomposition [1,2]
Consider the BCN

x(t + 1) = f (u(t), x(t)),
y(t) = h(x(t)),

(62)

where L ∈ L2n×2m+n . If there exists a logical coordinate transformation such that (62)
becomes the form

Z1(t + 1) = F1( Z1(t),Z2(t),U(t) ),

Z2(t + 1) = F2( Z2(t) ),

Z3(t + 1) = F3( Z2(t),Z3(t) ), (63)
Z4(t + 1) = F4( Z1(t),Z2(t),Z3(t),Z4(t),U(t) ),

Y (t) = H( Z1(t),Z2(t) ),

Definition 5.1 [2]
The system (63) is called the Kalman decomposition of (62) if n2 + n3 is just the
maximum order of the decomposition w.r.t. inputs and n3 + n4 equals the maximum
order of the decomposition w.r.t. outputs.

[1] D. Cheng, Z. Li, and H. Qi, Realization of Boolean control networks, Automatica, vol. 46,
no. 1, pp. 62-69, 2010.
[2] Y. Zou, J. Zhu, Kalman decomposition for Boolean control networks, Automatica, 54, 65-71,
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Realization
Consider the BCN

x(t + 1) = Lu(t)x(t),
y(t) = Hx(t),

(64)

where L ∈ L2n×2m+n .

Definition 6.1 [1]
A logical control system Σ : {

x̃(t + 1) = L̃u(t)x̃(t),

ỹ(t) = H̃x̃(t),

is a realization of the BCN (64) if, for any initial state x0 of BCN (64), there is an initial
state x̃0 of Σ, such that the outputs {y(t)} and {ỹ(t)} satisfy

ỹ(t) = ϕ(y(t)), t = 0, 1, 2, · · ·

for any input sequence u(t), t = 0, 1, 2, · · · , where ϕ is a one-to-one correspondence
from Col(H) to Col(H̃). It is called the minimum realization if the dimension of the
state vector of Σ is the smallest.

[1] Y. Li, J. Zhu, X. Liu, Results on the realization of Boolean control networks by the vertex
partition method, Science China Information Sciences, 66(7): 172205, 2023.
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Realization

Definition 6.2 [1]
Consider the BCN (64). If there exists a subspace Z1 = Fl{Z1,Z2, · · · ,Zs}, such
that {

z1(t + 1) = G1u(t)z1(t),

y(t) = Kz1(t),
(65)

then (65) is a realization of (64), where Zi ∼ zi , i ∈ [1, s].

In [1], the subspace Z1 = Fl{Z1,Z2, · · · ,Zs} is a controlled invariant subspace
containing Y. Here we call it a Y-friendly controlled invariant subspace, and we
call (65) a realization induced by a Y-friendly controlled invariant subspace.

(65) is called the minimum realization if Z1 = Fl{Z1,Z2, · · · ,Zs} is the smallest
Y-friendly controlled invariant subspace. Essentially, Z1 = Fl{Z1,Z2, · · · ,Zs} in
Definition 4.2 is not required to be a regular subspace.

[1] D. Cheng, L. Zhang, and D. Bi, Invariant subspace approach to Boolean (control) networks,
IEEE Transactions on Automatic Control, 68(4):2325-2337, 2023.
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Realization

Definition 6.3 [1]
Consider the BCN (64). Assume that Z 1 = Fl (Z1,Z2, · · · ,Zs) is a regular
subspace and Z = (Z1,Z2, · · · ,Zn) is a new coordinate frame. Z 1 is called a
Y-friendly controlled invariant regular subspace, if under Z , (26) can be expressed
as 

z1(t + 1) = G1u(t)z1(t),

z2(t + 1) = G2u(t)z(t),

y(t) = Kz1(t).

(66)

where K ∈ L2p×2s , G1 ∈ L2s×2s+m , G2 ∈ L2n−s×2n+m , z = z1z2, z1 = ns
i=1zi ,

Zi ∼ zi , i ∈ [1, n].

The subspace Z1 = Fl{Z1,Z2, · · · ,Zs} is called a Y-friendly controlled invariant
regular subspace, and we call (65) a realization induced by a Y-friendly controlled
invariant regular subspace.

[1] D. Cheng, Z. Li, and H. Qi, Realization of Boolean control networks, Automatica, vol. 46,
no. 1, pp. 62-69, 2010.
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Construct the realization systems
Consider the BCN (64)

x(t + 1) = [L1 L2 · · · L2m ]u(t)x(t),
y(t) = Hx(t).

(67)

Suppose that S = {Sl}r
l=1 is a common CP-VP of the vertex-colored STG

G1,G2, · · · ,G2m . Using the vertex partition S, we define an equivalence
relationship ∼ on ∆2n as follows: δi

2n and δj
2n are equivalent, i.e., δi

2n ∼ δj
2n , if and

only if δi
2n and δj

2n belong to the same Sl , l = 1, 2, · · · , r . The equivalence class of
δi

2n denoted by δ̃i
2n , is defined by

δ̃i
2n := {δj

2n |δj
2n ∼ δi

2n}.

Evidently, for any δi
2n ∈ Sl , δ̃i

2n = Sl . Thus, ∆2n/ ∼= S = {Sl}r
l=1 and

|∆2n/ ∼ | = r . Because |∆2n/ ∼ | = |∆r |, a one-to-one correspondence
φ : ∆2n/ ∼7→ ∆r can be defined as

φ(Sl ) = δl
r , l = 1, 2, · · · , r .
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Construct the realization systems

With a mild abuse of notation, we still use the symbol ∼ to denote the mapping
from ∆2n to ∆2n/ ∼ induced by the equivalence relationship ∼, which is defined
as follows: for any δi

2n ∈ Sl , ∼ (δi
2n ) = Sl . Then, we call the composite mapping

φ◦ ∼: ∆2n 7→ ∆r the quotient mapping and define

z = φ◦ ∼ (x), ∀x ∈ ∆2n . (68)

We set Col(H) = {δc1
2p , δ

c2
2p , · · · δcs

2p}. As |Col(H)| = s, we can reduce the order of
column of H from 2p to s by defining a one-to-one correspondence ϕ from Col(H)
to ∆s as

ϕ(δ
cj
2p ) = δj

s , j = 1, 2, · · · , s. (69)

Define
ỹ = ϕ(y), ∀y ∈ Col(H). (70)

Because there is a one-to-one correspondence between y and ỹ , the outputs
y = δ

cj
2n and ỹ = δj

s are seen as the same.
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Suppose that S = {Sl}r
l=1 is a common CP-VP of the vertex-colored STG

G1,G2, · · · ,G2m and Col(H) = {δc1
2p , δ

c2
2p , · · · δcs

2p}. By resorting to the defined
mappings ϕ and φ◦ ∼, the quotient logical system can be constructed as{

z(t + 1) = L̃u(t)z(t),

ỹ(t) = H̃z(t),
(71)

where z ∈ ∆r , u ∈ ∆2m , ỹ ∈ ∆s , L̃ ∈ Lr×r2m and H̃ ∈ Ls×r .The defined mappings
and the relationship between the quotient logical system and the original system
are shown in Fig. 11.

Figure 12:
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Example
Consider a BCN with an algebraic form

x(t + 1) = Lu(t)x(t),

y(t) = Hx(t),
(72)

where
L = δ23 [1, 4, 2, 7, 6, 8, 7, 7, 1, 3, 1, 2, 1, 5, 7, 6, 1, 3, 1, 4, 1, 5, 8, 8, 3, 4, 2, 8, 6, 8, 8, 4],
H = δ4[1, 2, 1, 3, 1, 2, 3, 3],x ∈ ∆8, u ∈ ∆4 and y ∈ ∆4. Let L = [L1, L2, L3, L4]
and y = δ1

4 , δ
2
4 , δ

3
4 represent red, gray, and white respectively. Then, the

vertex-colored STG G1, G2, G3, and G4 are constructed as shown in Fig. 12.

Figure 13: Vertex-colored STG G1, G2, G3 and G4.
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Figure 14: Vertex-colored STG G1, G2, G3 and G4.

The coarsest common CP-VP of G1, G2, G3, and G4 is S = {Sl}5
l=1 with

S1 = {1},S2 = {3, 5},S3 = {2, 6},S4 = {4, 8},S5 = {7}.

Then,
∆8/ ∼= S = {Sl}5

l=1 := {δ̃1
8 , δ̃

3
8 , δ̃

2
8 , δ̃

4
8 , δ̃

7
8} (73)

and |∆8/ ∼ | = 5. Define φ : ∆8/ ∼7→ ∆5 as φ(Sl ) = δl
5, l = 1, 2, 3, 4, 5. For any

δi
8 ∈ Sl , define ∼ (δi

8) = Sl . Then, the quotient mapping is φ◦ ∼: ∆8/ ∼7→ ∆5.
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Given that Col(H) = {δ1
4 , δ

2
4 , δ

3
4}, then |Col(H)| = 3.

Thus, ϕ : y ∈ ∆4 7→ ỹ ∈ ∆3 can be defined as ϕ(δi
4) = δi

3, i = 1, 2, 3.

Define z = φ◦ ∼ (x) and ỹ = ϕ(y).

Figure 15:
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Then, Omitting the computational processes, the quotient system with the
algebraic form is

z(t + 1) = L̃u(t)z(t),

y(t) = H̃z(t),
(74)

with L̃ = δ5[1, 3, 4, 5, 5, 1, 1, 2, 3, 5, 1, 1, 2, 4, 4, 2, 3, 4, 4, 4],H̃ = δ3[1, 1, 2, 3, 3].
The quotient system (74) is the minimum realization of the BCN (72). The
vertex-colored STG of the quotient system is shown in Fig. 13.

Figure 16: Vertex-colored STG of the quotient system (74).
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Some results on the realization of BCNs

D. Cheng, Z. Li, and H. Qi, Realization of Boolean control networks,
Automatica, vol. 46, no. 1, pp. 62-69, 2010.

D. Cheng, L. Zhang, and D. Bi, Invariant subspace approach to Boolean
(control) networks, IEEE Transactions on Automatic Control,
68(4):2325-2337, 2023.

Y. Yu, C. Wang, J. Feng and G. Chen, On minimum realization of Boolean
control networks, IEEE Transactions on Automatic Control, vol. 69, no. 6,
pp. 4094-4101, 2024.

Y. Li, J. Zhu, X. Liu, Results on the realization of Boolean control networks
by the vertex partition method, Science China Information Sciences, 66(7):
172205, 2023.
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Conclusions

1 This report mainly introduces the definition, main results, and
related research progress of Boolean network decoupling.

2 Breaking through the regularity constraints and proposing some
new decoupling definitions (disturbance decoupling, blocking
decoupling, Kalman decomposition, realization.)

3 Proposing the vertex partition method to solve the decoupling
problem of BNs (disturbance decoupling, input-output decoupling,
blocking decoupling, Kalman decomposition, realization).

4 Establishing some new decoupling conditions, including algebraic
and graphic conditions, using the state space method and vertex
partition method.
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Open problems

(1) How to design controllers for the decoupling problems of BNs?

(2) How to solve the decoupling problems of large-scale BNs?
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Some results from our team’s research on decoupling
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Thanks!

Tel:18166340549
Email: liyifeng@cqnu.edu.cn
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