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I. STP/STA with Algebraic Structure
of Matrices

+ Algebra and Matrix in Ancient China

Ç©d[1] : �êÃ¦´¥I��êÆ�u��Ü©.
Katz [2] : The idea of a matrix has a long history, dated
at least from the use by Chinese scholars of the Han
period for solving systems of linear equations. £Ý

{¤È�,���J��¥IÇ�,^u^�5�§|)
Crilly [3] : The matrix was initiated from 200 BC, Chi-
nese mathematicians used it. (Ý
åuú�c200
c,¥IêÆ[¦^
êi
�)
o©�[4] : �ÊÙ�â�¥)�5�§|��{Ò´
pd��{.
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+ The Goal of STP

It is our responsibility to develop matrix theory and its
related algebraic method, initiated by our ancestry!

[1] D. Lin, W. Li, Y. Yu, Mathematics and Mathematics-
Mechamization, Shandong Educational Press, Jinan,
2001.

[2] V.J. Katz, A History of Mathematics, Brief Version,
Springer, New York, 2004.

[3] T. Crilly, The 50 Mathematical Problems You Must
Know, (translated by Y. Wang), People’s Post Elec.
Press, Beijing 2012.

[4] W. Li, A History of Mathematics, CHEP and
Springer§Beijing§2000.
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+ Group

Definition 1.1
Consider a set G with an operator ∗ : G → G: (G, ∗). It is
called
(i) Semi-Group: if

a ∗ (b ∗ c) = (a ∗ b) ∗ c, a, b, c ∈ G. (1)

(ii) Monoid (semi-group with identity): if in addition to (i),
there exists an identity e ∈ G, such that

a ∗ e = e ∗ a = a, ∀a ∈ G. (2)
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Definition 1.1(cont’d)
(iii) Group: if in addition to (i) and (ii), for each a ∈ G there

exists a unique inverse a−1 such that

a ∗ a−1 = a−1 ∗ a = e, ∀a ∈ G. (3)

In addition, if

a ∗ b = b ∗ a, ∀a, b ∈ G, (4)

(G, ∗) is called an abelian group.
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+ STA vs Additive Group

Example 1.2
(i) Z,+), (Q,+), (R,+), (C,+) are groups.

(ii) (Rn,+) is a group.
(iii) (Mm×n,+) is a group.

Definition 1.3
(i)

R∞ =
∞⋃

n=1

Rn.

(ii) Let x, y ∈ R∞. Say, x ∈ Rm, y ∈ Rn, and t = lcm(m, n).
Then

x~±y :=
(
x⊗ 1t/m

)
±
(
y⊗ 1t/n

)
∈ Rt ⊂ R∞.
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Consider (R∞, ~+).
Is it a group? No!

e = {0n ∈ Rn | n = 1, 2, · · · }.

Hyper group: “Group/with multi-identity.

Then we might say (R∞, ~+) is a hyper group.
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+ Matrix Additive Group

Definition 1.4
(i) Let Q+ be the set of positive rational numbers. µ =

µy/µx ∈ Q+. gcd(µy, µx) = 1.

Mµ := {A ∈Mm×n | m/n = µ}.

Particularly,M1 is the set of square matrices.
(ii) Assume A,B ∈ Mµ. Say, A ∈ Mmµy×mµx , and B ∈
Mnµy×nµx , and lcm(m, n) = t. Then

A+̄B := (A⊗ It/m) + (B⊗ It/n). (5)

A~+B := (A⊗ Jt/m) + (B⊗ Jt/n), (6)

where Jk = 1
k 1k×k.
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Example 1.5
(i) (Mm×n,+) is an abelian group.

(ii) Neither (Mµ, +̄) nor (Mµ, ~+) is a group.
Both (Mµ, +̄) and (Mµ, ~+) are abelian Hyper groups.
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+ Matrix Product Group

Definition 1.6
(i) Let A ∈ Mm×n, B ∈ Mp×q, and t = lcm(n, p). The STP

of A and B is

A n B :=
(
A⊗ It/n

) (
B⊗ It/p

)
∈Mmt/n×qt/p. (7)

(ii)

M :=
∞⋃

m=1

∞⋃
n=1

Mm×n.

(iii)
Tn := {A ∈Mn×n | A is invertible.}.

(iv)

T :=
∞⋃

n=1

Tn.
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Example 1.7
(i) (M,n) is a monoid with identity e = 1.

(ii) (Tn,×) is a group.
(iii) (T ,n) is not a group.

(T ,n) is a hyper group.

Definition 1.8
ConsiderM.
(i) Define

Em×n :=
1√
mn

1m×n, m, n ∈ Z+.

(ii) Let A,B ∈M, say A ∈Mm×n, B ∈Mp×q, lcm(m, p) = s,
and lcm(n, q) = t. Define

A~±B := (A⊗ Es/m×t/n)± (B⊗ Es/p×t/q) ∈Ms×t. (8)
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Example 1.9

(M, ~+) is an abelian hyper group.

+ DK-STP and Pseudo DK-STP

Definition 1.10
Let A,B ∈M. Say A ∈Mm×n, B ∈Mp×q. Define
(i) (DK-STP)

A

n

B := (A⊗ ET
t/n)(B⊗ Et/p) ∈Mmt/n×qt/p, (9)

where t = lcm(n, p).
(ii) (Pseudo-DK-STP)

A ~

n

B := (A⊗ Es/m×t/n)

n

(B⊗ Es/p×t/q) ∈Ms×t, (10)

where s = lcm(m, p), and t = lcm(n, q).
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Proposition 1.11
(i) (M,

n

) is a semi-group.
(ii) (M, ~

n

) is a semi-group.

Poincaré: “All of mathematics is a tale about group.”
(
\4: ¤k�êÆÑ´+��¯.)

[5] I. James, Remarkable Mathematicians – From Euler
to von Neumann, Cambridge Univ. Press, 2002.
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II. Hyper Group
+ Lattice

Definition 2.1
A partial order set Λ is a lattice, if λ, µ ∈ Λ, there are
sup(λ, µ) (or λ ∨ µ), and inf(λ, µ) (or λ ∧ µ).

Hasse diagramµin Figure 1 the left is a lattice, the right is
not a littice.
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Example 2.1
(i) Consider Z+. Set a ≺ b if a 6= b and a|b, i.e. a is a

proper factor of b. It follows that

a ∨ b = lcm(a, b); a ∧ b = gcd(a, b).

Then (Z+,≺) is a lattice, called MD-1 lattice.
(ii) Consider Z+ × Z+. Set (a, c) ≺ (b, d) if both a ≺ b and

c ≺ d (defined as in (i)). It follows that

(a, c) ∨ (b, d) = (lcm(a, b), lcm(c, d));
(a, c) ∧ (b, d) = (gcd(a, b), gcd(c, d)).

Then (Z+ × Z+,≺) is a lattice, called the MD-2 lattice.
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+ Set of Identities (with Lattice Structure)

Definition 2.2
Consider a semi-group G = (G, ∗) . e ⊂ G is called an
identity set of G, if
(i)

g ∗ e = e ∗ g, ∀g ∈ G, ∀e ∈ e. (11)

(ii) There is a lattice Λ as the index set of e, that is,

e = {eλ | λ ∈ Λ}.

Moreover,

eλ ∗ eµ = eλ∨µ, λ, µ ∈ Λ. (12)
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Definition 2.2(cont’d)
(iii) For each g ∈ G there exists a unique eg = eλg ∈ e such

that

eλ ∗ g = g, (13)

if and only if, λ ≺ λg, (including λ = λg).
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+ Hyper Group

Definition 2.3
Consider a semi-group G = (G, ∗) .
(i) G = (G, ∗) is a hyper-monoid, if there exists an identity

set e ⊂ G.
(ii) A hyper-Monoid G = (G, ∗) is a hyper group, if for each

g ∈ G, there exists a g−1 ∈ G such that

g ∗ g−1 = g−1 ∗ g = eg. (14)

In addition, if a ∗ b = b ∗ a, ∀a, b ∈ G, then it is called an
abelian hyper-monoid/hyper group.
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Example 2.4

(i) (R∞, ~+) is a hyper group, where

e = {0n ∈ Rn | n ∈ Z+}, (15)

w.r.t. MD-1 lattice.
(ii) (M1, +̄) (or (M1, ~+)) is a hyper group, where the iden-

tity set is

e = {0n×n ∈Mn×n | n ∈ Z+}, (16)

w.r.t. MD-1 lattice.
(iii) (Mµ, +̄)) (or (Mµ, ~+)) is a hyper group, where the

identity set is

e = {0nµy×nµx ∈Mnµy×nµx | n ∈ Z+}, (17)

w.r.t. MD-1 lattice.
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Example 2.4(cont’d)

(iv) (M, ~+) is a hyper group, where the identity set is

e = {0m×n ∈Mm×n | (m, n) ∈ Z+ × Z+}, (18)

w.r.t. MD-2 lattice.
Example 2.5
Recall that

T :=
∞⋃

i=1

Tn,

where Tn is the set of n× n invertible matrices. Then
(T ,n) is a hyper group, where the identity set is

e = {In ∈Mn×n | n ∈ Z+}, (19)

w.r.t. MD-1 lattice.
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+ Component Groups

Proposition 2.6
Assume G = (G, ∗, e) is a hyper group, where e w.r.t. Λ.
For each eλ ∈ e, λ ∈ Λ set Gλ ⊂ G as

Gλ := {x ∈ G | ex = eλ}. (20)

Then
(i) For each λ ∈ Λ, Gλ = (Gλ, ∗) is a group, called the

component group of G, and its identity is eλ.
(ii)

G =
⋃
λ∈Λ

Gλ (21)

is a partition.
(iii) If x ∈ Gλ and y ∈ Gµ, then x ∗ y ∈ Gλ∨µ.
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+ Equivalence

Definition 2.7
Consider a hyper group G = (G, ∗, e) . Let x, y ∈ G. x and
y are said to be equivalent, denoted by x ∼ y, if there exist
eα and eβ such that

x ∗ eα = y ∗ eβ. (22)

The equivalence class of x, denoted by x̄, is

x̄ := {y ∈ G | y ∼ x}.

Definition 2.8
Consider a hyper group G = (G, ∗). The equivalence ∼
is said to be consistent with the group operator ∗, if the
followings are satisfied.
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Definition 2.8(cont’d)
(i) If x1 ∼ x2 and y1 ∼ y2, then

x1 ∗ y1 ∼ x2 ∗ y2. (23)

(ii) If there exists e ∈ e such that x ∼ e, then x ∈ e.

Then we have the identity set as one element.

Proposition 2.9
Consider a hyper group G = (G, ∗, e). If the equivalence is
consistent with the operator, then

ē = e, e ∈ e. (24)
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Proposition 2.10
Consider a hyper group G = (G, ∗, e). Assume the equiva-
lence ∼ defined by (22) is consistent with ∗. Then

x̄ ∗ ȳ := x ∗ y, (25)

is properly defined. Moreover, Ḡ = (Ḡ, ∗) is a group, called
the equivalence group of G, denoted by

Ḡ := G/ ∼= (Ḡ, ∗),

where Ḡ = {x̄ | x ∈ G}.

Observing Propositions 2.6 and 2.10, a geometric picture
for the structure of a hyper group, called the group decom-
position of hyper group, is depicted by Figure 2.
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Figure 2: Group Decomposition of a Hyper-Group G
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III. Permutation Hyper Group
+ Left Permutation Hyper-Group

S :=
∞⋃

n=1

Sn.

Definition 3.1
Assume m|n, and km = n, define ϕm

n : Sm → Sn as

ϕm
n (σ)((i− 1)k + s) := (σ(i)− 1)k + s,
σ ∈ Sm, s ∈ [1, k], i ∈ [1,m].

(26)

Note that

Mϕm
n (σ) = Mσ ⊗ Ik. (27)
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Definition 3.2
Let σ ∈ Sm, µ ∈ Sn, and t = lcm(σ, µ). Then

σ � µ = ϕm
t (σ) ◦ ϕn

t (µ) ∈ St. (28)

Proposition 3.3
(S,�, e) is a hyper group, where

e = {Idn | n ∈ Z+}

w.r.t. MD-1 lattice.

Q1: What is the quotient group?

Q2: Is left permutation hyper group isomorphic to right per-
mutation hyper group?
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IV. Hyper Ring

+ Matrix Ring

Definition 4.1
Let R be a set with + and ×. It is a ring if
(i) (R,+) is an abelian group.

(ii) (R,×) is a semi-group.
(iii) (Distributive Law)

(a + b)× c = a× c + b× c,
a× (b + c) = a× b + a× c. a, b, c ∈ R. (29)

In addition if (R,×) is a monoid (i.e., with identity), R is
called a ring with identity; if a × b = b × a ∀a, b ∈ R, R is
called a commutative ring.
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Example 4.2
(i) (Mn×n,+,×) is a ring with identity.

(ii) (Mm×n,+,

n

) is a ring.

Definition 4.3
Let R be a set with + and ×. It is a hyper ring if

(R,+) is a hyper group.
(ii) and (iii) are the same as in Definition 4.1.
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Example 4.4

(i) (M1, +̄,n) (or (M1, ~+, ◦)) is a hyper ring, where

A+̄B := (A⊗ It/m(B⊗ It/n), A ∈Mm×m,B ∈Mn×n.

A~+B := (A⊗ Jt/m(B⊗ Jt/n).

A ◦ B = (A⊗ Jt/m)(B⊗ Jt/n), (Jk = Ek×k =
1
k

1k×k).

(ii) (M, ~+, ~

n

) is a hyper ring, where (A ∈ Mm×n, B ∈
Mp×q, s = lcm(m, p), and t = lcm(n, q)),

A~+B = (A⊗ Es/m×t/n) + (B⊗ Es/p×t/q) ∈Ms×t.

A ~

n

B = (A⊗ Es/m×t/n)

n

(B⊗ Es/p×t/q) ∈Ms×t.
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+ Decomposition of Hyper Ring

Proposition 4.5
Consider a hyper-ring (R,+,×) with the identity set of its
addition hyper group as e = {eλ | λ ∈ Λ}.
(i) If the addition + and the product × of R are consistent,

then each (Rλ,+,×) is a ring, called the component
ring of the hyper-ring (R,+,×) .

(ii) In addition to (i), if the equivalence is consistent with
the operators, then the operators over quotient space
can be defined properly by

x̄ + ȳ := x + y, x, y ∈ R,
x̄× ȳ := x× y. (30)

Therefore, the quotient space becomes a ring, called
the equivalence ring.
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Similarly to hyper groups, the decomposition of hyper-rings
are shown in Figure 3.
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Figure 3: Ring Decomposition of a Hyper-Ring R
33 / 41



V. Hyper Vector Space
+ Vector Space

Definition 5.1 [6]
A vector space V over R is a triple V = (X,+, ·) , where X is
a set with elements x ∈ X are vectors; addition + : X×X →
X, and scalar product · : R× X → X, satisfying
(1) (X,+) is an abelian group, that is,

(i) Associativity:

(x + y) + z = x + (y + z), x, y, z ∈ X. (31)

(ii) Commutativity:

x + y = y + x, x, y ∈ X. (32)
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Definition 5.1(cont’d)

(iii) Zero: There exists a unique ~0 ∈ X, such that

x + ~0 = ~0 + x = x, ∀x ∈ X. (33)

(iv) Inverse: For each x ∈ X there exists a −x ∈ X, such
that

x + (−x) = 0, x ∈ X. (34)

(2) Scalar product satisfies

(i) Associativity:

(r1r2) · x = r1 · (r2 · x), r1, r2 ∈ F, x ∈ X. (35)
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Definition 5.1(cont’d)
(ii) Distributive Law:

(r1 + r2) · x = r1 · x + r2 · x, r, r1, r2 ∈ R,
r · (x + y) = r · x + r · y, x, y ∈ X. (36)

(iii) Unit:

1 · x = x, 1 ∈ R, x ∈ X. (37)

Definition 5.2
A hyper vector space is structurally similar to a vector
space except that (X,+) is an abelian hyper group.

[6] W. Greub, Linear Algebra, 4 ed., Springer-Verlag,
New York, 1981.
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Example 5.3

(i) (R∞, ~+) is a hyper-vector space.
(ii) (M1, +̄) is a hyper-vector space. (M1, ~+) is also a

hyper-vector space.
(iii) (Mµ.~+) (or (Mµ.+̄)) is a hyper-vector space.
(iv) (M, ~+) is a hyper-vector space.

Proposition 5.4
Consider a hyper-vector space V = (X,+, ·). Assume e =
{eλ | λ ∈ Λ}. Then
(i) For each λ ∈ Λ, Xλ is a vector space.

(ii) Assume the addition is consistent w.r.t. equivalence,
then the equivalence group is a vector space.
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VI. Hyper Module

+ Hyper Module

Definition 6.1
Let R be a hyper ring. A (left) R-module is an additive
(abelian) hyper group A with a function π : R × A → A
such that
(i)

r(a + b) = ra + rb, r ∈ R, a, b ∈ A; (38)

(ii)

(r + s)a = ra + sa, r, s ∈ R, a, b ∈ A; (39)
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Definition 6.1(cont’d)
(iii)

r(sa) = (rs)a. (40)

If R has an identity set eR for the product, such that

eRx ∼ x eR ∈ eR,∀x ∈ A, (41)

and there exists at least one ex ∈ eR, such that

exx = x, (42)

then A is said to be a unitary hyper R-module.
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VII. Conclusion

+ Hyper-Algebra

{
Hyper Group⇒ Hyper Ring⇒ Hyper Module
Hyper Vector Space
⇒ Cross-dimensional linear (control) systems

[7] D. Cheng, From Dimension-Free Matrix Theory to
Cross-Dimensional Dynamic Systems, Elsevier, Lon-
don, 1019.

[8] D. Cheng, Cross-Dimensional Mathemat-
ics – A Foundation for STP/STA, (preprint:
http:arxiv.org/abs/2406.12920), 2024.
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Thank you!
Any Question?
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