From STP to Hyper-Algebra (Part-1) 从矩阵半张量积到超代数(第一部分)

Daizhan Cheng

Institute of Systems Science Academy of Mathematics and Systems Science Chinese Academy of Sciences

Report at TianYuan Workshop on STP Theory and Applications Kunming, China Jan. 6, 2025

Outline

1 STP/STA with Algebraic Structure of Matrices

2 Hyper Group

Permutation Hyper Group

4 Hyper Ring

5 Hyper Vector Space

6 Hyper Module

I. STP/STA with Algebraic Structure of Matrices

Algebra and Matrix in Ancient China

- 吴文俊[1]:代数无疑是中国古代数学最发达的部分.
- Katz [2]: The idea of a matrix has a long history, dated at least from the use by Chinese scholars of the Han period for solving systems of linear equations. (矩阵 历史久远, 至少可追溯到中国汉代, 用于用线性方程组)
- Crilly [3]: The matrix was initiated from 200 BC, Chinese mathematicians used it. (矩阵起源于公元前200年,中国数学家使用了数字阵列)
- 李文林[4]: ≪九章算术≫ 中解线性方程组的方法就是 高斯消去法.

The Goal of STP

It is our responsibility to develop matrix theory and its related algebraic method, initiated by our ancestry!

- [1] D. Lin, W. Li, Y. Yu, Mathematics and Mathematics-Mechamization, Shandong Educational Press, Jinan, 2001.
- [2] V.J. Katz, A History of Mathematics, Brief Version, Springer, New York, 2004.
- [3] T. Crilly, The 50 Mathematical Problems You Must Know, (translated by Y. Wang), People's Post Elec. Press, Beijing 2012.
- [4] W. Li, A History of Mathematics, CHEP and Springer, Beijing, 2000.

Definition 1.1

Consider a set *G* with an operator $*: G \to G$: (G, *). It is called

(i) Semi-Group: if

$$a * (b * c) = (a * b) * c, \quad a, b, c \in G.$$
 (1)

(ii) Monoid (semi-group with identity): if in addition to (i), there exists an identity $e \in G$, such that

$$a * e = e * a = a, \quad \forall a \in G.$$
 (2)

Definition 1.1(cont'd)

(iii) Group: if in addition to (i) and (ii), for each $a \in G$ there exists a unique inverse a^{-1} such that

$$a * a^{-1} = a^{-1} * a = e, \quad \forall a \in G.$$
 (3)

In addition, if

$$a * b = b * a, \quad \forall a, b \in G,$$
 (4)

(G, *) is called an abelian group.

STA vs Additive Group

Example 1.2

Definition 1.3

(i)

 $\mathbb{R}^{\infty} = \bigcup_{n=1}^{\infty} \mathbb{R}^n.$

(ii) Let $x, y \in \mathbb{R}^{\infty}$. Say, $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$, and t = lcm(m, n). Then

$$x \pm y := (x \otimes \mathbf{1}_{t/m}) \pm (y \otimes \mathbf{1}_{t/n}) \in \mathbb{R}^t \subset \mathbb{R}^\infty.$$

Consider $(\mathbb{R}^{\infty}, \vec{+})$. Is it a group? No!

$$\mathbf{e} = \{\mathbf{0}_n \in \mathbb{R}^n \mid n = 1, 2, \cdots\}.$$

Hyper group: "Group "with multi-identity.

Then we might say $(\mathbb{R}^{\infty}, \vec{+})$ is a hyper group.

Definition 1.4

(i) Let \mathbb{Q}^+ be the set of positive rational numbers. $\mu = \mu_y/\mu_x \in \mathbb{Q}^+$. $gcd(\mu_y, \mu_x) = 1$.

$$\mathcal{M}_{\mu} := \{ A \in \mathcal{M}_{m \times n} \mid m/n = \mu \}.$$

Particularly, \mathcal{M}_1 is the set of square matrices. (ii) Assume $A, B \in \mathcal{M}_{\mu}$. Say, $A \in \mathcal{M}_{m\mu_y \times m\mu_x}$, and $B \in \mathcal{M}_{n\mu_y \times n\mu_x}$, and $\operatorname{lcm}(m, n) = t$. Then

$$A \overline{+} B := (A \otimes I_{t/m}) + (B \otimes I_{t/n}).$$
(5)

$$\vec{A+B} := (A \otimes J_{t/m}) + (B \otimes J_{t/n}), \tag{6}$$

where $J_k = \frac{1}{k} \mathbf{1}_{k \times k}$.

Example 1.5

(i) (M_{m×n}, +) is an abelian group.
(ii) Neither (M_µ, +) nor (M_µ, +) is a group. Both (M_µ, +) and (M_µ, +) are abelian Hyper groups.

Matrix Product Group

Definition 1.6

(i) Let $A \in \mathcal{M}_{m \times n}$, $B \in \mathcal{M}_{p \times q}$, and $t = \operatorname{lcm}(n, p)$. The STP of A and B is

$$A \ltimes B := (A \otimes I_{t/n}) (B \otimes I_{t/p}) \in \mathcal{M}_{mt/n \times qt/p}.$$
 (7)

(ii)

$$\mathcal{M} := \bigcup_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \mathcal{M}_{m \times n}.$$

(iii)

 $\mathcal{T}_n := \{A \in \mathcal{M}_{n \times n} \mid A \text{ is invertible.} \}.$

(iv)

$$\overline{}:=\bigcup_{n=1}^{\infty}\mathcal{T}_n.$$

Example 1.7

(i)
$$(\mathcal{M}, \ltimes)$$
 is a monoid with identity $e = 1$.

- (ii) (\mathcal{T}_n, \times) is a group.
- (iii) (\mathcal{T}, \ltimes) is not a group. (\mathcal{T}, \ltimes) is a hyper group.

Definition 1.8

 $\text{Consider } \mathcal{M}.$

(i) Define

$$\mathcal{E}_{m \times n} := rac{1}{\sqrt{mn}} \mathbf{1}_{m \times n}, \quad m, n \in \mathbb{Z}^+.$$

(ii) Let $A, B \in \mathcal{M}$, say $A \in \mathcal{M}_{m \times n}$, $B \in \mathcal{M}_{p \times q}$, lcm(m, p) = s, and lcm(n, q) = t. Define

$$A \stackrel{\cdot}{\pm} B := (A \otimes \mathcal{E}_{s/m \times t/n}) \pm (B \otimes \mathcal{E}_{s/p \times t/q}) \in \mathcal{M}_{s \times t}.$$
 (8)

Example 1.9

$$(\mathcal{M},\vec{+})$$
 is an abelian hyper group.

DK-STP and Pseudo DK-STP

Definition 1.10

Let $A, B \in \mathcal{M}$. Say $A \in \mathcal{M}_{m \times n}, B \in \mathcal{M}_{p \times q}$. Define (i) (DK-STP)

$$A \times B := (A \otimes \mathcal{E}_{t/n}^T)(B \otimes \mathcal{E}_{t/p}) \in \mathcal{M}_{mt/n \times qt/p}, \qquad (9)$$

where t = lcm(n, p). (ii) (Pseudo-DK-STP)

$$A \stackrel{\prec}{\propto} B := (A \otimes \mathcal{E}_{s/m \times t/n}) \times (B \otimes \mathcal{E}_{s/p \times t/q}) \in \mathcal{M}_{s \times t},$$
 (10)

where $s = \operatorname{lcm}(m, p)$, and $t = \operatorname{lcm}(n, q)$.

Proposition 1.11

(i) (\mathcal{M}, \times) is a semi-group. (ii) $(\mathcal{M}, \vec{\times})$ is a semi-group.

Poincaré: "All of mathematics is a tale about group." (庞加莱:所有的数学都是群的故事.)

[5] I. James, Remarkable Mathematicians – From Euler to von Neumann, Cambridge Univ. Press, 2002.

II. Hyper Group

Lattice

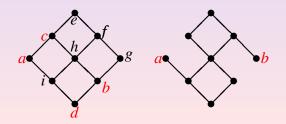
Definition 2.1

A partial order set Λ is a lattice, if λ , $\mu \in \Lambda$, there are $\sup(\lambda, \mu)$ (or $\lambda \lor \mu$), and $\inf(\lambda, \mu)$ (or $\lambda \land \mu$).

Hasse diagram: in Figure 1 the left is a lattice, the right is not a littice.

Lattice

NotLattice



Example 2.1

(i) Consider \mathbb{Z}_+ . Set $a \prec b$ if $a \neq b$ and a|b, i.e. *a* is a proper factor of *b*. It follows that

$$a \lor b = \operatorname{lcm}(a, b); \quad a \land b = \operatorname{gcd}(a, b).$$

Then (\mathbb{Z}_+, \prec) is a lattice, called MD-1 lattice. (ii) Consider $\mathbb{Z}_+ \times \mathbb{Z}_+$. Set $(a, c) \prec (b, d)$ if both $a \prec b$ and $c \prec d$ (defined as in (i)). It follows that

$$\begin{aligned} (a,c) \lor (b,d) &= (\operatorname{lcm}(a,b),\operatorname{lcm}(c,d)); \\ (a,c) \land (b,d) &= (\operatorname{gcd}(a,b),\operatorname{gcd}(c,d)). \end{aligned}$$

Then $(\mathbb{Z}_+\times\mathbb{Z}_+,\prec)$ is a lattice, called the MD-2 lattice.

Set of Identities (with Lattice Structure)

Definition 2.2

Consider a semi-group $\mathcal{G}=(G,*)$. $\mathbf{e}\subset G$ is called an identity set of $\mathcal{G},$ if (i)

$$g * e = e * g, \quad \forall g \in G, \ \forall e \in \mathbf{e}.$$
 (11)

(ii) There is a lattice Λ as the index set of e, that is,

$$\mathbf{e} = \{ e_{\lambda} \mid \lambda \in \Lambda \}.$$

Moreover,

$$e_{\lambda} * e_{\mu} = e_{\lambda \lor \mu}, \quad \lambda, \mu \in \Lambda.$$
 (12)

Definition 2.2(cont'd) (iii) For each $g \in G$ there exists a unique $e_g = e_{\lambda_g} \in \mathbf{e}$ such that $e_{\lambda} * g = g,$ (13)

if and only if, $\lambda \prec \lambda_g$, (including $\lambda = \lambda_g$).

Hyper Group

Definition 2.3

Consider a semi-group $\mathcal{G} = (G, *)$.

- (i) $\mathcal{G} = (G, *)$ is a hyper-monoid, if there exists an identity set $\mathbf{e} \subset G$.
- (ii) A hyper-Monoid $\mathcal{G} = (G, *)$ is a hyper group, if for each $g \in G$, there exists a $g^{-1} \in G$ such that

$$g * g^{-1} = g^{-1} * g = e_g.$$
 (14)

In addition, if a * b = b * a, $\forall a, b \in G$, then it is called an abelian hyper-monoid/hyper group.

Example 2.4

(i) $(\mathbb{R}^{\infty}, \vec{+})$ is a hyper group, where

$$\mathbf{e} = \{0_n \in \mathbb{R}^n \mid n \in \mathbb{Z}_+\},\tag{15}$$

w.r.t. MD-1 lattice.

(ii) $(\mathcal{M}_1,\bar+)$ (or $(\mathcal{M}_1,\bar+))$ is a hyper group, where the identity set is

$$\mathbf{e} = \{ \mathbf{0}_{n \times n} \in \mathcal{M}_{n \times n} \mid n \in \mathbb{Z}_+ \},$$
(16)

w.r.t. MD-1 lattice.

(iii) $(\mathcal{M}_{\mu},\bar{+}))$ (or $(\mathcal{M}_{\mu},\bar{+}))$ is a hyper group, where the identity set is

$$\mathbf{e} = \{\mathbf{0}_{n\mu_y \times n\mu_x} \in \mathcal{M}_{n\mu_y \times n\mu_x} \mid n \in \mathbb{Z}_+\}, \quad (17)$$

w.r.t. MD-1 lattice.

Example 2.4(cont'd)

(iv) $(\mathcal{M},\vec{+})$ is a hyper group, where the identity set is

$$\mathbf{e} = \{\mathbf{0}_{m \times n} \in \mathcal{M}_{m \times n} \mid (m, n) \in \mathbb{Z}_+ \times \mathbb{Z}_+\},$$
(18)

w.r.t. MD-2 lattice.

Example 2.5

Recall that

$$\mathcal{T} := \bigcup_{i=1}^{\infty} \mathcal{T}_n,$$

where T_n is the set of $n \times n$ invertible matrices. Then (T, \ltimes) is a hyper group, where the identity set is

$$\mathbf{e} = \{ I_n \in \mathcal{M}_{n \times n} \mid n \in \mathbb{Z}_+ \},$$
(19)

w.r.t. MD-1 lattice.

Proposition 2.6

Assume $\mathcal{G} = (G, *, \mathbf{e})$ is a hyper group, where \mathbf{e} w.r.t. Λ . For each $e_{\lambda} \in \mathbf{e}$, $\lambda \in \Lambda$ set $G_{\lambda} \subset G$ as

$$G_{\lambda} := \{ x \in G \mid e_x = e_{\lambda} \}.$$
(20)

Then

(i) For each λ ∈ Λ, G_λ = (G_λ, *) is a group, called the component group of G, and its identity is e_λ.
(ii)

$$G = \bigcup_{\lambda \in \Lambda} G_{\lambda} \tag{21}$$

is a partition. (iii) If $x \in G_{\lambda}$ and $y \in G_{\mu}$, then $x * y \in G_{\lambda \lor \mu}$.

Equivalence

Definition 2.7

Consider a hyper group $\mathcal{G} = (G, *, \mathbf{e})$. Let $x, y \in G$. x and y are said to be equivalent, denoted by $x \sim y$, if there exist e_{α} and e_{β} such that

$$x * e_{\alpha} = y * e_{\beta}. \tag{22}$$

The equivalence class of x, denoted by \bar{x} , is

$$\bar{x} := \{ y \in G \mid y \sim x \}.$$

Definition 2.8

Consider a hyper group $\mathcal{G} = (G, *)$. The equivalence \sim is said to be consistent with the group operator *, if the followings are satisfied.

Definition 2.8(cont'd)

(i) If $x_1 \sim x_2$ and $y_1 \sim y_2$, then

$$x_1 * y_1 \sim x_2 * y_2.$$
 (23)

(ii) If there exists $e \in \mathbf{e}$ such that $x \sim e$, then $x \in \mathbf{e}$.

Then we have the identity set as one element.

Proposition 2.9

Consider a hyper group $\mathcal{G} = (G, *, \mathbf{e})$. If the equivalence is consistent with the operator, then

$$\bar{e} = \mathbf{e}, \quad e \in \mathbf{e}.$$
 (24)

Proposition 2.10

Consider a hyper group $\mathcal{G} = (G, *, \mathbf{e})$. Assume the equivalence \sim defined by (22) is consistent with *. Then

$$\bar{x} * \bar{y} := \overline{x * y},\tag{25}$$

is properly defined. Moreover, $\overline{\mathcal{G}} = (\overline{G}, *)$ is a group, called the equivalence group of \mathcal{G} , denoted by

$$ar{\mathcal{G}} := \mathcal{G} / \sim = (ar{G}, *),$$

where $\overline{G} = {\overline{x} \mid x \in G}$.

Observing Propositions 2.6 and 2.10, a geometric picture for the structure of a hyper group, called the group decomposition of hyper group, is depicted by Figure 2.

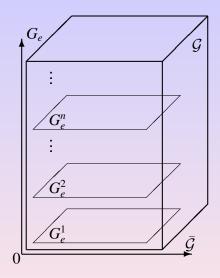


Figure 2: Group Decomposition of a Hyper-Group \mathcal{G}

III. Permutation Hyper Group

Left Permutation Hyper-Group

$$\mathbf{S} := \bigcup_{n=1}^{\infty} \mathbf{S}_n.$$

Definition 3.1

Assume m|n, and km = n, define $\varphi_n^m : \mathbf{S}_m \to \mathbf{S}_n$ as

$$\varphi_n^m(\sigma)((i-1)k+s) := (\sigma(i)-1)k+s, \sigma \in \mathbf{S}_m, \ s \in [1,k], \ i \in [1,m].$$
(26)

Note that

$$M_{\varphi_n^m(\sigma)} = M_\sigma \otimes I_k.$$
⁽²⁷⁾

Definition 3.2

Let
$$\sigma \in \mathbf{S}_m$$
, $\mu \in \mathbf{S}_n$, and $t = \operatorname{lcm}(\sigma, \mu)$. Then

$$\sigma \odot \mu = \varphi_t^m(\sigma) \circ \varphi_t^n(\mu) \in \mathbf{S}_t.$$
(28)

Proposition 3.3

 $(\mathbf{S},\odot,\mathbf{e})$ is a hyper group, where

$$\mathbf{e} = \{ Id_n \mid n \in Z^+ \}$$

w.r.t. MD-1 lattice.

Q1: What is the quotient group?

Q2: Is left permutation hyper group isomorphic to right permutation hyper group?

IV. Hyper Ring

Matrix Ring

Definition 4.1

Let *R* be a set with + and \times . It is a ring if

- (i) (R, +) is an abelian group.
- (ii) (R, \times) is a semi-group.
- (iii) (Distributive Law)

$$(a+b) \times c = a \times c + b \times c, a \times (b+c) = a \times b + a \times c. \quad a, b, c \in \mathbb{R}.$$
 (29)

In addition if (R, \times) is a monoid (i.e., with identity), *R* is called a ring with identity; if $a \times b = b \times a \ \forall a, b \in R$, *R* is called a commutative ring.

Example 4.2

(i) $(\mathcal{M}_{n \times n}, +, \times)$ is a ring with identity. (ii) $(\mathcal{M}_{m \times n}, +, \times)$ is a ring.

Definition 4.3

Let *R* be a set with + and \times . It is a hyper ring if

- (R, +) is a hyper group.
- (ii) and (iii) are the same as in Definition 4.1.

Example 4.4

(i)
$$(\mathcal{M}_1, \bar{+}, \ltimes)$$
 (or $(\mathcal{M}_1, \bar{+}, \circ)$) is a hyper ring, where
 $A\bar{+}B := (A \otimes I_{t/m}(B \otimes I_{t/n}), \quad A \in \mathcal{M}_{m \times m}, B \in \mathcal{M}_{n \times n}.$
 $A\bar{+}B := (A \otimes J_{t/m}(B \otimes J_{t/n}).$
 $A \circ B = (A \otimes J_{t/m})(B \otimes J_{t/n}), \quad (J_k = \mathcal{E}_{k \times k} = \frac{1}{k}\mathbf{1}_{k \times k}).$
(ii) $(\mathcal{M}, \bar{+}, \bar{\times})$ is a hyper ring, where $(A \in \mathcal{M}_{m \times n}, B \in \mathcal{M}_{p \times q}, s = \operatorname{lcm}(m, p), \text{ and } t = \operatorname{lcm}(n, q)),$
 $A\bar{+}B = (A \otimes \mathcal{E}_{s/m \times t/n}) + (B \otimes \mathcal{E}_{s/p \times t/q}) \in \mathcal{M}_{s \times t}.$
 $A \bar{\times} B = (A \otimes \mathcal{E}_{s/m \times t/n}) \times (B \otimes \mathcal{E}_{s/p \times t/q}) \in \mathcal{M}_{s \times t}.$

Proposition 4.5

Consider a hyper-ring $(R, +, \times)$ with the identity set of its addition hyper group as $\mathbf{e} = \{e_{\lambda} \mid \lambda \in \Lambda\}$.

- (i) If the addition + and the product × of *R* are consistent, then each $(R_{\lambda}, +, \times)$ is a ring, called the component ring of the hyper-ring $(R, +, \times)$.
- (ii) In addition to (i), if the equivalence is consistent with the operators, then the operators over quotient space can be defined properly by

$$\bar{x} + \bar{y} := \overline{x + y}, \quad x, y \in R, \\ \bar{x} \times \bar{y} := \overline{x \times y}.$$
(30)

Therefore, the quotient space becomes a ring, called the equivalence ring.

Similarly to hyper groups, the decomposition of hyper-rings are shown in Figure 3.

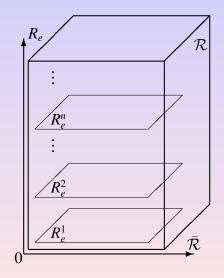


Figure 3: Ring Decomposition of a Hyper-Ring ${\cal R}$

V. Hyper Vector Space

Vector Space

Definition 5.1 [6]

A vector space \mathcal{V} over \mathbb{R} is a triple $\mathcal{V} = (X, +, \cdot)$, where *X* is a set with elements $x \in X$ are vectors; addition $+ : X \times X \rightarrow X$, and scalar product $\cdot : \mathbb{R} \times X \rightarrow X$, satisfying (1) (X, +) is an abalian group, that is

(1) (X, +) is an abelian group, that is,

(i) Associativity:

$$(x + y) + z = x + (y + z), \quad x, y, z \in X.$$
 (31)

(ii) Commutativity:

$$x + y = y + x, \quad x, y \in X.$$
 (32)

Definition 5.1(cont'd)

(iii) Zero: There exists a unique $\vec{0} \in X$, such that

$$x + \vec{0} = \vec{0} + x = x, \quad \forall x \in X.$$
 (33)

(iv) Inverse: For each $x \in X$ there exists a $-x \in X$, such that

$$x + (-x) = 0, \quad x \in X.$$
 (34)

(2) Scalar product satisfies

(i) Associativity:

$$(r_1r_2) \cdot x = r_1 \cdot (r_2 \cdot x), \quad r_1, r_2 \in \mathbb{F}, \ x \in X.$$
 (35)

Definition 5.1(cont'd)

(ii) Distributive Law:

$$(r_1 + r_2) \cdot x = r_1 \cdot x + r_2 \cdot x, \quad r, r_1, r_2 \in \mathbb{R}, r \cdot (x + y) = r \cdot x + r \cdot y, \quad x, \ y \in X.$$
(36)

(iii) Unit:

$$1 \cdot x = x, \quad 1 \in \mathbb{R}, x \in X. \tag{37}$$

Definition 5.2

A hyper vector space is structurally similar to a vector space except that (X, +) is an abelian hyper group.

[6] W. Greub, *Linear Algebra*, 4 ed., Springer-Verlag, New York, 1981.

Example 5.3

- (i) $(\mathbb{R}^\infty,\vec{+})$ is a hyper-vector space.
- (ii) $(\mathcal{M}_1,\bar{+})$ is a hyper-vector space. $(\mathcal{M}_1,\bar{+})$ is also a hyper-vector space.
- (iii) $(\mathcal{M}_{\mu}.\vec{+})$ (or $(\mathcal{M}_{\mu}.\bar{+})$) is a hyper-vector space.
- (iv) $(\mathcal{M}, \vec{+})$ is a hyper-vector space.

Proposition 5.4

Consider a hyper-vector space $\mathcal{V} = (X, +, \cdot)$. Assume $\mathbf{e} = \{e_{\lambda} \mid \lambda \in \Lambda\}$. Then

- (i) For each $\lambda \in \Lambda$, X_{λ} is a vector space.
- (ii) Assume the addition is consistent w.r.t. equivalence, then the equivalence group is a vector space.

VI. Hyper Module

Hyper Module

Definition 6.1

Let *R* be a hyper ring. A (left) *R*-module is an additive (abelian) hyper group *A* with a function $\pi : R \times A \to A$ such that

(i)

$$r(a+b) = ra + rb, \quad r \in R, \ a, \ b \in A;$$
 (38)

(ii)

$$(r+s)a = ra + sa, \quad r, s \in R, \ a, \ b \in A;$$
 (39)

Definition 6.1(cont'd) (iii)

$$r(sa) = (rs)a. \tag{40}$$

If *R* has an identity set e_R for the product, such that

$$e_R x \sim x \quad e_R \in \mathbf{e}_R, \forall x \in A,$$
 (41)

and there exists at least one $e_x \in \mathbf{e}_R$, such that

$$e_x x = x, \tag{42}$$

then *A* is said to be a unitary hyper R-module.

VII. Conclusion

Hyper-Algebra

 $\begin{cases} Hyper Group \Rightarrow Hyper Ring \Rightarrow Hyper Module \\ Hyper Vector Space \\ \Rightarrow Cross-dimensional linear (control) systems \end{cases}$

[7] D. Cheng, From Dimension-Free Matrix Theory to Cross-Dimensional Dynamic Systems, Elsevier, London, 1019.

[8] D. Cheng, Cross-Dimensional Mathematics – A Foundation for STP/STA, (preprint: http:arxiv.org/abs/2406.12920), 2024. Thank you! Any Question?