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Motivation

The global stabilization problem for Boolean control network (BCN) is to
find, if possible, u(t) such that the BCN becomes globally convergent. In the
case of disease treatment, one may want to design therapeutic interventions
that steer the patient to the desirable state, such as the healthy one, and
maintain this state afterwards.

In recent years, the artificial control technology of gene expression has at-
tracted extensive attention. Akutsu et al. [1] stated that “one of the major
goals of systems biology is to develop a control scheme for complex biological
systems”.

It is worth noting that in practical applications, the system state is not always
available, so researchers often consider sampled-data control, which can
be described as follows:

u(t) = Ex(tk), tk ≤ t < tk+1,

where tk+1 − tk are sampling intervals.

[1] T. Akutsu, M. Hayashida, W. K. Ching and M. K. Ng, “Control of Boolean networks: Hardness results and algorithms
for tree structured networks,” Journal of Theoretical Biology, vol. 244, no. 4, pp. 670–679, 2007.

Liangjie Sun (Kyoto University) Boolean networks 2025–1–7 4 / 40



As Ballesta et al. mentioned in [2], the effectiveness of drugs is affected by
the time of administration. The administration time can be best coordinated
with the daily rhythm. The daily rhythm is produced by an endogenous
timing mechanism, which is very sensitive to external signals. The prediction
of circadian time by machine learning and mathematical model was proposed
in [3], but the prediction also has errors. Here, since drug treatment can be
regarded as treatment input, we use noisy sampling interval to represent
these errors.

In order to characterize these errors and study whether the uncertainty
in the implementation of the controller leads to the instability of the
system, the noisy sampling interval is proposed and stabilization for sampled-
data BCNs under noisy sampling interval is investigated.

[2] A. Ballesta, P. F. Innominato, R. Dallmann, et al., “Systems chronotherapeutics,” Pharmacological Reviews, vol. 69,
no. 2, pp. 161–199, 2017.

[3] J. Hesse, D. Malhan, M. Yalçin, et al., “An optimal time for treatment-predicting circadian time by machine learning
and mathematical modelling,” Cancers, vol. 12, no. 11, pp. 3103, 2020.
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System Description

Consider the following BCN and sampled-data control:

x(t + 1) = Lu(t)x(t), (1)

u(t) = Kx(tk), tk ≤ t < tk+1, (2)

where L ∈ L2n×2n+m and K ∈ L2m×2n .
By substituting (2) into (1), one can obtain

x(tk + 1) = Lu(tk)x(tk) = LKW[2n]Φnx(tk),
x(tk + 2) = (LKW[2n])

2Φ2
nx(tk),

...

x(tk+1) = (LKW[2n])
tk+1−tk Φtk+1−tk

n x(tk).

Let Tk = tk+1 − tk be the sampling interval and denote x(tk) by x [k]. We have a
system of the following form:

x [k + 1] = (LKW[2n])
Tk ΦTk

n x [k]. (3)
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Problem Statement

Notably, the sampling interval considered here is disturbed by noise and we describe
the noisy sampling interval as follows:

Tk = T + vk ,

where T is a constant and vk is a random variable. Here, the following two types
of vk are considered.

1 the probability of vk choosing i is pi ;

2 the random variable vk follows a discrete-time homogeneous Markov chain.

Definition 1.1

Given x∗ ∈ ∆2n , sampled-data BCN (1) under noisy sampling interval is said to be
globally stochastically stable at x∗, if

lim
t→∞

E{x(t)|x(0) = x0} = x∗, ∀x0 ∈ ∆2n .
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Noisy sampling interval satisfies a given
probability distribution

First, we assume that vk takes values from the setM = {−T +1,−T +2, . . . , l}, l ∈
[0 : 2n − T ], which means that Tk ∈ [1 : T + l ]. The probability of vk choosing
i ∈ [−T + 1 : l ] is P(vk = i) = pi ≥ 0.

Then sampled-data BCN (1) under noisy sampling interval is transformed into the
following special probabilistic Boolean network (PBN):

x [k + 1] = Ax [k], (4)

where A ∈ L2n×2n is chosen from the set {A−T+1,A−T+2, . . . ,Al},

Ai = (LKW[2n])
T+iΦT+i

n , i ∈ [−T + 1 : l ]

and P(A = Ai ) = P(vk = i) = pi . Let x0 = x(0) = x [0], where t0 = 0.
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For large-scale sampled-data BCNs, we consider the following transformation.

Now, for each Ai , let {α̂i
1, α̂

i
2, . . . , α̂

i
r(i)} be the set of distinct indices in the set

{α(T+i)
1 , α

(T+i)
2 , . . . , α

(T+i)
2n }, where α̂i

1 < α̂i
2 < · · · < α̂i

r(i) and let s ij be the

number of indices in {α(T+i)
1 , α

(T+i)
2 , . . . , α

(T+i)
2n } coinciding with α̂i

j , j ∈ [1 : r(i)].
Using a permutation matrix Qi ∈ L2n×2n , we have

AiQi = δ2n [α̂i
1 · · · α̂i

1︸ ︷︷ ︸
s i1

α̂i
2 · · · α̂i

2︸ ︷︷ ︸
s i2

· · · α̂i
r(i) · · · α̂

i
r(i)︸ ︷︷ ︸

s i
r(i)

].

Then we can factorize Ai as follows: Ai = A1
i A2

i , where A1
i ∈ M2n×r , A2

i ∈ Lr×2n

and
A1
i = δ2n [0 · · · 0︸ ︷︷ ︸

j i1−1

α̂i
1 0 · · · 0︸ ︷︷ ︸

j i2−j i1−1

α̂i
2 · · · α̂i

r(i) 0 · · · 0︸ ︷︷ ︸
r−j i

r(1)

]

A2
i = δr [j

i
1 · · · j i1︸ ︷︷ ︸

s i1

j i2 · · · j i2︸ ︷︷ ︸
s i2

· · · j ir(1) · · · j ir(1)︸ ︷︷ ︸
s i
r(1)

]Q−1
i .
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Now, we define a bijective map from {δαj

2n : αj ∈ Γ} to ∆r as ϕ(δ
αj

2n ) = δjr , ∀j ∈
[1 : r ]. Setting Âi = A2

i A1
i ∈Mr×r , we obtain a new probabilistic logic network as

follows:
z [k + 1] = Âiz [k] (5)

where z [k] ∈ ∆r ∪ {δ0
r } and i ∈ [−T + 1 : l ].

Theorem 1.2

Consider sampled-data BCN (1) under noisy sampling interval. If the following
conditions hold

1 [Â−T+1]j,j = 1;

2 there exists k̂ ∈ [1 : r − 1], such that Rowj [(Ân p)k̂ ] > 0,

where Â = [Â−T+1 Â−T+2 · · · Âl ], Âi = A2
i A1

i , i ∈ [−T + 1 : l ] and p =
[p−T+1 p−T+2 · · · pl ]

T, P(A = Ai ) = P(vk = i) = pi , then sampled-data BCN
(1) under noisy sampling interval is globally stochastically stable at δ

αj

2n .
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Noisy sampling interval follows a
discrete-time homogeneous Markov chain

Assume that vk (k ∈ N) follows a discrete-time homogeneous Markov chain taking
values in a finite set M = {−T + 1,−T + 2, . . . , l} with the transition probability
matrix

∏
= [πab] where

πab = P(vk+1 = b|vk = a), (6)

πab ≥ 0 for a, b ∈M, and Σl
b=−T+1πab = 1 for a ∈M.

Then sampled-data BCN (1) under noisy sampling interval can be transformed into
the following stochastic BN

x [k + 1] = Avk x [k], (7)

where Ai = (LKW[2n])
T+iΦT+i

n , i ∈ [−T + 1 : l ].
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Corollary 1.3

Consider sampled-data BCN (1) under noisy sampling interval. If there exists vector
λ̂b ∈ Rr , b ∈M such that the following conditions hold

1 λ̂T
b δ

j
r = 0;

2 λ̂T
b δ

k
r > 0;

3 [Â−T+1]j,j = 1;

4 (Σl
b=−T+1πabλ̂

T
b Âa − λ̂T

a )δkr < 0,

for a ∈ [−T + 1 : l ], k ∈ [1 : r ] and j 6= k, and Âi = A2
i A1

i (Ai = A1
i A2

i ), i ∈
[−T + 1 : l ], then sampled-data BCN (1) under noisy sampling interval is globally
stochastically stable at δ

αj

2n .

Remark 1.4

By transforming the considered PBN (4) (or (7)) into a size-reduced probabilistic
logic network z [k + 1] = Âiz [k], i ∈ [−T + 1 : l ], where the dimension of PBN is
2n and the dimension of logical probabilistic network is r , the above Theorem 1.2
and Corollary 1.3 are applicable to large-scale sampled-data BCNs.
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Reconstruction of sampled-data BCNs under
noisy sampling interval

Assume that vk takes values from {−T + 1,−T + 2, . . . ,−T + N}, N ∈ [1 : 2n],
which means that Tk ∈ [1 : N]. The probability of vk choosing i ∈ [−T + 1 :
−T + N] is P(vk = i) ≥ 0.
Regard

xi [k + 1] = A
(i)
0 x [k], (8)

where A
(i)
0 = MiKW[2n](LKW[2n])

T−1ΦT
n as the main dynamics and then regard

xi [k + 1] = A
(i)
l x [k], (9)

where A
(i)
l = MiKW[2n](LKW[2n])

l−1Φl
n, l 6= T , l ∈ [1 : N] as the noisy dynamics.
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Let p0 be the probability that A
(i)
0 is selected and pl be the probability that A

(i)
l

is selected, where l ∈ [1 : N] and l 6= T . Let x [0] = x0 and Q = {l : l 6=
T , l ∈ [1 : N]}. Let the steady-state probability si , i ∈ [1 : n] satisfy si =
E{xi [k + 1]|x0} = E{xi [k]|x0}. The reconstruction problem of sampled-data BCN
under noisy sampling interval can be formulated as follows:

Problem 1.5

Consider a sampled-data BCN under noisy sampling interval. Suppose that the
main dynamics (8) and the steady-state probabilities si , i ∈ [1 : n] are given. Then
we are to find

1 probabilities p0 and pl , l ∈ Q;

2 matrices A
(i)
l , l ∈ Q, i ∈ [1 : n]

maximizing p0 subject to p0 +
∑

l∈Q pl = 1, A
(i)
l = MiKW[2n](LKW[2n])

l−1Φl
n, l ∈

Q and
si = (p0A

(i)
0 +

∑
l∈Q

plA
(i)
l )s, ∀i ∈ [1 : n],

where s = nn
i=1si .
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The above problem can be formulated as a linear programming problem:

max p0

s.t. s̄i = p0

∑
j∈I(A

(i)
0 )

[s]j +
∑
l∈Q

pl

∑
j∈I(A

(i)
l )

[s]j , for i ∈ [1 : n],

p0 +
∑
l∈Q

pl = 1,

0 ≤ p0 ≤ 1,

0 ≤ pl ≤ 1, l ∈ Q,

A
(i)
0 = MiKW[2n](LKW[2n])

T−1ΦT
n , i ∈ [1 : n],

A
(i)
l = MiKW[2n](LKW[2n])

l−1Φl
n, i ∈ [1 : n], l ∈ Q.

Remark 1.6
According to the solution of the above linear programming problem, sampled-data
BCN (1) under noisy sampling interval can be reconstructed as follows: the noisy
sampling interval is Tk , where the probability of Tk choosing T is p0 and the
probability of Tk choosing l ∈ Q is pl .
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Conclusions

In [S1], we study stabilization and reconstruction of sampled-data BCNs under
noisy sampling interval. There are some contributions in this part.

1 For a large-scale sampled-data BCN, we transform it into a size-reduced prob-
abilistic logical network. Then by studying the stochastic stability of the
probabilistic logical network, some sufficient conditions for global stochastic
stability of the large-scale sampled-data BCN are obtained. In addition, for
general large-scale PBNs, the above transformation method is also applicable.

2 The reconstruction of BNs and PBNs is not only a fundamental but essen-
tial problem in systems biology. Based on the given steady-state probabilities
of the transformed PBN, the reconstruction problem of sampled-data BCNs
under noisy sampling interval can be well-solved as a linear programming prob-
lem. Notably, the reconstruction method we presented here is also applicable
to large-scale sampled-data BCNs.

[S1] Liangjie Sun and Wai-Ki Ching, “Stabilization and reconstruction of sampled-data Boolean control networks under
noisy sampling interval,” IEEE Transactions on Automatic Control, vol. 68, no. 4, pp. 2444–2451, 2023.
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Motivation

1 In [4], Liu et al. first applied sampled-data state feedback control (SDSFC) to
the stabilization problem of BCNs. It was mentioned in [5] that by comparing
the traditional state feedback control with SDSFC, the number of controller
updates could be reduced by using SDSFC. The sampling interval of the
SDSFC is constant.

2 In fact, for real-world engineering problems, the sampling interval is usually
not constant. Aperiodic sampled-data control (ASDC) is proposed, whose
sampling interval is uncertain and stochastic. As mentioned in Wu et al. [6],
the utilization of ASDC can further reduce the costs of energy, computation
and communication.

[4] Y. Liu, J. Cao, et al., “Sampled-data state feedback stabilization of Boolean control networks,” Neural Computation,
vol. 28, no. 4, pp. 778–799, 2016.

[5] L. Tong, Y. Liu, F. E. Alsaadi and T. Hayat, “Robust sampled-data control invariance for Boolean control networks,”
Journal of the Franklin Institute, vol. 354, no. 15, pp. 7077–7087, 2017.

[6] Y. Wu, H. Su, et al., “Consensus of multiagent systems using aperiodic sampled-data control,” IEEE Transactions on
Cybernetics, vol. 46, no. 9, pp. 2132–2143, 2015.
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Motivation

We observe that in [7,8], very often they convert sampled-data control into
time-delay control. Therefore, the motivation of this part is how to transform
the ASDC into delayed control and how to apply the time-delay approach to
analyze the stochastic stability of BCNs under ASDC.

The key challenge is how to ensure that the transformed delayed control is
consistent with the original ASDC.

[7] Y. Xu, H. Su and Y. Pan, “Output feedback stabilization for markov-based nonuniformly sampled-data networked
control systems,” Systems & Control Letters, vol. 62, no. 8, pp. 656–663, 2013.

[8] E. Fridman, A. Seuret and J. P. Richard, “Robust sampled-data stabilization of linear systems: An input delay approach,”
Automatica, vol. 40, no. 8, pp. 1441–1446, 2004.
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System Description

A BCN under ASDC can be described as follows:

x(k + 1) = Lu(k)x(k), (10)

u(k) = Ex(θi ), θi ≤ k < θi+1. (11)

where x(k) ∈ ∆2n , u(k) ∈ ∆2m , L ∈ L2n×2n+m and E ∈ L2m×2n .

It is worth noting that the sampling instants θi , i = 1, 2, . . . are uncertain. θ0 = 0.
Denote hi , θi+1−θi the i-th sampling interval. Here we assume that the sampling
interval is bounded above by N + 1, i.e., 1 ≤ hi ≤ N + 1, i = 0, 1, . . ..
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Convert a ASDC into a Delayed Control

The ASDC can be represented as a delayed control as follows:

u(k) = Ex(k − τk), θi ≤ k < θi+1, (12)

where τk , k − θi is a random variable.

Since the value of τk+1 is only related to τk , we assume that τk follows a
Markov chain taking values in a finite set M = {0, 1, . . . ,N}.

When τk = j 6= N, j ∈ M, if θi+1 − θi > j + 1, then θi ≤ k + 1 < θi+1 and
τk+1 = k + 1−θi = τk + 1 = j + 1; if θi+1−θi = j + 1, then k + 1 = θi+1 and
τk+1 = k +1−θi+1 = 0. Specially, when τk = N, then τk+1 ≡ 0 (hi ≤ N +1).
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Therefore, the transition probability matrix of τk is Π = [πab], where πab =
P(τk+1 = b|τk = a), a, b ∈M, can be expressed as follows:

Π =


π0 1− π0 0 · · · 0 0
π1 0 1− π1 · · · 0 0
...

...
...

. . .
...

...
πN−1 0 0 · · · 0 1− πN−1

1 0 0 · · · 0 0

 ,

where πj ∈ (0, 1), j = 0, 1, . . . ,N − 1.

Liangjie Sun (Kyoto University) Boolean networks 2025–1–7 22 / 40



Global Stability

Consider BCN (10) and ASDC (11). For θi ≤ k < θi+1, we have

x(θi + 1) = LEW[2n]Φnx(θi ),

x(θi + 2) = (LEW[2n])
2(Φn)2x(θi ),

...

x(θi+1) = (LEW[2n])
θi+1−θi (Φn)θi+1−θi x(θi ),

i.e.,
x(k + 1) = (LEW[2n])

k+1−θi (Φn)k+1−θi x(θi ), θi ≤ k < θi+1. (13)

Definition 2.1

BCN (10) under ASDC (11) is said to be globally stochastically stable at δ2n

2n , if
for any initial value x(0) ∈ ∆2n and θ0 = 0, the trajectory x(k) of system (13)
satisfies limk→∞ E{x(k)|x(0), θ0 = 0} = δ2n

2n .
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By τk = k − θi , θi ≤ k < θi+1, one can get that

x(k + 1) = (LEW[2n])
τk+1(Φn)τk+1x(k − τk). (14)

Consider system (14) and define the augmented state vector X(k) = [xT(k) xT(k−
1) · · · xT(k − N)]T, one has

X(k + 1) = G (τk)X(k), (15)

where

G (τk) =

[
A(τk)

B

]
∈ M(N+1)2n×(N+1)2n ,

and

B =


I2n 0 · · · 0 0
0 I2n · · · 0 0
...

...
. . .

...
...

0 0 · · · I2n 0

 ∈ MN2n×(N+1)2n .

For simplicity, we define ((δ2n

2n )T (δ2n

2n )T · · · (δ2n

2n )T)T as Y .
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Lemma 2.2

BCN (10) under ASDC (11) is globally stochastically stable at δ2n

2n , if and only if
for any X(0) and τ0 = 0:

lim
k→∞

E{X(k), k |X(0), τ0 = 0} = Y .

Theorem 2.3

Consider BCN (10) under ASDC (11). If there exist vectors 0 ≤ β(i) ∈
R(N+1)2n

, i ∈M and the following inequalities hold for all i ∈M, ∑
j∈{0,i+1}

πijβ
T(j)G (j)− βT(i)

X(k) < 0, τk−1 = i ,

 ∑
j∈{0,i+1}

πijβ
T(j)G (j)− βT(i)

Y = 0,

especially, when i = N, then j = 0, then BCN (10) under ASDC (11) is globally
stochastically stable at δ2n

2n .
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Conclusions

In [S2], a novel method for the global stochastic stability analysis of aperiodic
sampled-data BCNs is introduced. The main contributions of this part are as
follows:

1 When the sampling instants are uncertain and only the activation frequencies
of the sampling interval are known, by transforming the ASDC into delayed
control, the global stochastic stability of the BCN under this ASDC is consid-
ered for the first time.

2 For SDSFC (constant sampling interval), we can also convert it into delayed
control, and then the global stability of the BCN under SDSFC can be studied
by a delay approach.

[S2] Liangjie Sun, Wai-Ki Ching and Jianquan Lu, “Stabilization of aperiodic sampled-data Boolean control networks: A
delay approach,” IEEE Transactions on Automatic Control, vol. 66, no. 11, pp. 5606-5611, 2021.
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Motivation

The key to solve some problems in control theory is to identify certain internal
state of a system. Compared with input and output data, the internal state
of a system is difficult to measure directly in most cases. Therefore, state
estimation is a meaningful and challenging research topic in control theory.

For BCNs, state estimation has been investigated from the following two
aspects: observability [9,10] and reconstructibility [11,12] (also known
as detectability). The former discusses whether one can confirm the initial
state x(0) based on input and output observations over a period of time [0,T ].
The latter discusses whether one can determine the end state x(T ) based on
input and output observations in the interval [0,T ].

[9] D. Cheng and H. Qi, “Controllability and observability of Boolean control networks,” Automatica, vol. 45, no. 7,
pp. 1659–1667, 2009.

[10] R. Li, M. Yang and T. Chu, “Observability conditions of Boolean control networks,” International Journal of Robust
and Nonlinear Control, vol. 24, no. 17, pp. 2711–2723, 2014.

[11] E. Fornasini and M. E. Valcher, “Observability, reconstructibility and state observers of Boolean control networks,”
IEEE Transactions on Automatic Control, vol. 58, no. 6, pp. 1390–1401, 2012.

[12] B. Wang, J. Feng, H. Li and Y. Yu, “On detectability of Boolean control networks,” Nonlinear Analysis: Hybrid
Systems, vol. 36, pp. 100859, 2020.
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Motivation

All the measurements considered above are all up-to-date, that is, the out-
put measurements of the system are described as y(t) = h(x(t)) or y(t) =
h(v(t), x(t)), where v(t) represents the noise measurement.

However, in many practical cases, that is, in control systems and real-time
distributed decision-making, sensor data might be lost, received out of se-
quence or received with random delay, so that the available measurements are
not up-to-date.

Therefore, it is essential and meaningful to investigate the state estimation
of BCNs under stochastic disturbances with random delay in measurements.
Moreover, to our best knowledge, this issue is still an open and challenging
problem.

[13] Y. Guo, Q. Li and W. Gui, “Optimal state estimation of Boolean control networks with stochastic disturbances,” IEEE
Transactions on Cybernetics, vol. 50, no. 3, pp. 1355–1359, 2018.

[14] H. Chen, Z. Wang, J. Liang, and M. Li, “State estimation for stochastic time-varying Boolean networks,” IEEE
Transactions on Automatic Control, vol. 65, no. 12, pp. 5480–5487, 2020.
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System Description

Consider the following BCN

x(t) = Lu(t − 1)w(t − 1)x(t − 1), (16)

and
y(t) = Hv(t)x(t), (17)

where x(t) ∈ ∆N is the state of BCN with initial state x0. Here u(t) ∈ ∆M stands
for the control input and we consider that {u(t)} is pre-specified, y(t) ∈ ∆Q is the
output at time t. Furthermore, w(t) ∈ ∆S1 and v(t) ∈ ∆S2 represent the process
disturbance and the measurement noise with probability distribution vectors

P
(
w(t) = δlS1

)
= [qw ]l , l ∈ [1 : S1],

and
P
(
v(t) = δlS2

)
= [qv ]l , l ∈ [1 : S2],

respectively. Moreover, v(t) and w(t) are mutually independent and that they are
independent of x(0), x(1), . . . , x(t) for any t.
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Problem Statement

Here we consider the following two types of measurements:

1 The received measurement y(t) may take one of the following forms:

y(t) = φ or y(t) = Hv(t)x(t − i), i ∈ [0 : d ], (18)

where y(t) = φ means that the filter receives nothing at time t. In other
cases, measurements are received with/without delays. The maximum time
delay d is known. In addition, the probability of receiving the measurement
y(t) = Hv(t)x(t − i) is P(y(t) = Hv(t)x(t − i)) = τ i , i ∈ [0 : d ]. Thus, the

probability of data loss at time t is P(y(t) = φ) = 1−
∑d

i=0 τ
i .

2 The received measurement is given as below:

y(t) = Hv(t)x(t − d(t)), (19)

where d(t) represents the random time delay. Moreover, d(t) considered
here is governed by a discrete-time Markov chain with the finite state-space
{0, 1, . . . , d}, and the transition probability matrix of d(t) is Λ = [λij ], i , j ∈
[0 : d ].

Our aim is to estimate the state of BCN (16) from the measurements with random
delay.
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Estimate the state of BCN (16) from
measurement (18)

For any k ≥ t, we define qxk/t ∈ ΨN as qxk/t =
[[
qxk/t

]
1
· · ·

[
qxk/t

]
N

]T

where[
qxk/t

]
j

:= P
(

x(k) = δjN |y [0 : t] = y[0:t]

)
, j ∈ [1 : N].

For any k ≥ t, we define qx̄k/t ∈ ΨNd+1 as qx̄k/t =
[[
qx̄k/t

]
1
· · ·

[
qx̄k/t

]
Nd+1

]T

,

where
[
qx̄k/t

]
j

:= P
(

x̄(k) =
[
(δi0N)T · · · (δidN)T

]T

|y [0 : t] = y[0:t]

)
, and x̄(k) =[

x(k)T · · · x(k − d)T
]T
, x(k) = δi0N , . . . , x(k − d) = δidN , j = (i0 − 1)Nd + (i1 −

1)Nd−1 + · · ·+ id . For the sake of brevity, let φN(i0, i1, . . . , id) = (i0−1)Nd + (i1−
1)Nd−1 + · · ·+ id .
The measurement (18) can be described as

y(t) = φ or y(t) = Hv(t)C i x̄(t), i ∈ [0 : d ],

where C i x̄(t) = x(t − i), i.e., C 0 = [IN 0 · · · 0],C 1 = [0 IN · · · 0], . . . ,C d =
[0 0 · · · IN ].
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Theorem 3.1

Consider BCN (16) with measurement (18). Let qx̄0/−1 be the initial probability

distribution vector of the augmented state x̄(t) and qx0/−1 = qx0 . Then, we have

qx̄t+1/t =
[[
qx̄t+1/t

]
1

[
qx̄t+1/t

]
2
· · ·

[
qx̄t+1/t

]
Nd+1

]T

, (20)

qx̄t/t =


qx̄t/t−1, yt = φ,[[

qx̄t/t

]
1
· · ·

[
qx̄t/t

]
Nd+1

]T

, yt = δλt

Q ,
(21)

where λt ∈ [1 : Q],
[
qx̄t+1/t

]
k

=
∑N

j=1

[
Lutqwδ

i1
N

[
qx̄t/t

]
k̃+j

]
i0

, k̃ =

φN(i1, i2, . . . , id , 0) and
[
qx̄t/t

]
k

=

[
H̃0δ

i0
N +···+H̃dδ

id
N

]
λt

[qx̄t/t−1]k∑
j0,...,jd∈[1:N]

[
H̃0δ

j0
N +···+H̃dδ

jd
N

]
λt

[
qx̄
t/t−1

]
l

,

i0, i1, . . . , id ∈ [1 : N], k = φN(i0, i1, . . . , id) and l = φN(j0, j1, . . . , jd),

H̃ = Hqv
[

τ 0

τ 0 + τ 1 + · · ·+ τd
· · · τd

τ 0 + τ 1 + · · ·+ τd

]
:= [H̃0 H̃1 · · · H̃d ].
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Theorem 3.2

Consider BCN (16) with measurements (18). The optimal state estimation x̂t/t is
given as follows:

x̂t/t = δ ĵtN ,

where ĵt = arg mini∈[1:N] (Vd ◦ Vd)T
[
qxt/t

]
i
,
[
qxt/t

]
i

=
∑Nd

l=1

[
qx̄t/t

]
(i−1)Nd+l

and

qx̄t/t are obtained by Theorem 3.1.
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Estimate the state of BCN (16) from
measurement (19)

The measurement (19) can be expressed as follows:

y(t) = Hv(t)C d(t)x̄(t), d(t) ∈ [0 : d ],

where C d(t)x̄(t) = x(t − d(t)), i.e.,

C 0 = [IN 0 · · · 0], . . . ,C d = [0 0 · · · IN ].

Here, d(t) follows a discrete-time Markov chain taking values in a finite state-space
{0, 1, . . . , d}. The transition probability matrix of d(t) is Λ = [λij ], where

λij = P (d(t) = j |d(t − 1) = i) , i , j ∈ [0 : d ].

Let Colj(Λ) be the jth column of the transition probability matrix Λ. Then we set
πi (t) = P(d(t) = i) and denote π(t) := [π0(t) π1(t) · · · πd(t)]T.
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P(y(t) = Hv(t)x(t − i)) =P(d(t) = i)

=
d∑

j=0

P(d(t − 1) = j)P(d(t) = i |d(t − 1) = j)

=
d∑

j=0

πj(t − 1)λji

=[Coli+1(Λ)]Tπ(t − 1), i ∈ [0 : d ].

Here, we assume that d(0) is a random variable following the probability distribution

vector π(0) = [π0(0) π1(0) · · · πd(0)]T, i.e., P(d(0) = i) = πi (0), i ∈ [0 : d ].
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Theorem 3.3

Consider BCN (16) with measurements (19). Let qx̄0/−1 be the initial probability

distribution vector of the augmented state x̄(t) and qx0/−1 = qx0 . Assume that

π(0) = [π0(0) π1(0) · · · πd(0)]T. Then, we have

qx̄t+1/t =
[[
qx̄t+1/t

]
1

[
qx̄t+1/t

]
2
· · ·

[
qx̄t+1/t

]
Nd+1

]T

, (22)

qx̄t/t =
[[
qx̄t/t

]
1

[
qx̄t/t

]
2
· · ·

[
qx̄t/t

]
Nd+1

]T

, (23)

where yt = δλt

Q , λt ∈ [1 : Q],
[
qx̄t+1/t

]
k

=
∑N

j=1

[
Lutqwδ

i1
N

[
qx̄t/t

]
k̃+j

]
i0

, k̃ =

φN(i1, i2, . . . , id , 0) and
[
qx̄t/t

]
k

=

[
H̃0(t)δ

i0
N +···+H̃d (t)δ

id
N

]
λt

[qx̄t/t−1]k∑
j0,...,jd∈[1:N]

[
H̃0(t)δ

j0
N +···+H̃d (t)δ

jd
N

]
λt

[
qx̄
t/t−1

]
l

,

i0, i1, . . . , id ∈ [1 : N], k = φN(i0, i1, . . . , id), l = φN(j0, j1, . . . , jd),

H̃(t) = Hqv [π0(t) π1(t) · · · πd(t)] := [H̃0(t) H̃1(t) · · · H̃d(t)],

πi (t) = [Coli+1(Λ)]Tπ(t − 1), i ∈ [0 : d ].
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Application to state estimation of BCN (16)
with the sampled measurement

The measurement received by the filter is considered as below:

y(t) = Hv(t)x(θi ), θi ≤ t < θi+1, (24)

where θ0 = 0, θi , i ∈ Z+ is uncertain and θi+1 − θi ∈ [1 : d + 1]. Suppose
that pj , j ∈ [1 : d + 1] is the activation frequency of the θi+1 − θi = j , where∑d+1

j=1 pj = 1. Then Eq. (24) is rewritten as y(t) = Hv(t)x(t − d(t)), θi ≤
t < θi+1, where d(t) := t − θi is a random variable and it follows a discrete-time
Markov chain taking values in a finite set {0, 1, . . . , d}. Moreover, the transition
probability matrix of d(t) is

Λ =


p1∑d+1
j=1

pj
j

∑d+1
j=2

pj
j∑d+1

j=1

pj
j

0 · · · 0

...
...

...
. . .

...
pd
d

pd
d +

pd+1
d+1

0 0 · · ·
pd+1
d+1

pd
d +

pd+1
d+1

1 0 0 · · · 0

 .

Here, we should note that d(0) = 0, i.e., π(0) = [1 0 · · · 0]T.
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Conclusions

In [S3], we investigate the optimal state estimation issue of BCNs with stochastic
disturbances coming from measurements with random delay. The main contribu-
tions of this part are as follows:

1 In the previous existing literature on state estimation of BCNs, it was almost
assumed that the measurements were received without delay. However, we
found that in practice, measurements are always received with delay. For
the first time, we focus on the measurements with random delay for state
estimation problem of BCNs.

2 The sampled measurements are also considered for the first time. Notably,
for the sampled measurements, we can transform them into the second type
of measurements with random delay.

[S3] Liangjie Sun and Wai-Ki Ching, “State estimation of Boolean control networks under stochastic disturbances with
random delay in measurements,” International Journal of Robust and Nonlinear Control, vol. 33, no. 3, pp. 2447–2464,
2023.
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