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WHAT IS SLS?

An SLS is a dynamic system that consists of a finite number of
linear subsystems and a logical rule that regulates the activating
subsystem during the operating time.

Figure 1: A switched linear system
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WHY STUDY SLS?

Due to the flexibility of selecting the modes, SLS offers
superior performance and can accomplish an enhanced range
of tasks compared with each individual subsystem.

In the majority of the existing literature investigating SLS, the
logical rules that generate the switching signals were usually
chosen freely or decided by the range of the physical state,
i.e., the rules are given as piecewise constant maps from each
switching time to the index set of the subsystems or
state-feedback switching.
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System Description

SLS under dynamical logic switching

Figure 2: System diagram
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System Description

SLS under dynamical logic switching (Cont’d)

SLS: {
x(t + 1) = Aσ(t)x(t) + Bσ(t)u(t),
y(t) = Cσ(t)x(t),

(1)

LCN: {
θ⃗(t + 1) = L⋉ γ⃗(t)⋉ θ⃗(t),

σ⃗(t) = R ⋉ γ⃗(t)⋉ θ⃗(t),
(2)
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System Description

STP-Based Mergence

Letting z(t) := θ⃗(t)⋉ x(t) ∈ RNn, the STP-based mergence of the
systems is derived as follows:

z(t + 1) = θ⃗(t + 1)⋉ x(t + 1)

= Lγ⃗(t)θ⃗(t)[Aσ⃗(t)x(t) + Bσ⃗(t)u(t)]

= Lγ⃗(t)θ⃗(t)AR γ⃗(t)θ⃗(t)x(t)

+Lγ⃗(t)θ⃗(t)BR γ⃗(t)θ⃗(t)u(t)

= L[IMN ⊗ (AR)]ΦMN γ⃗(t)θ⃗(t)x(t)

+L[IMN ⊗ (BR)]ΦMN γ⃗(t)θ⃗(t)u(t)

= Gγ⃗(t)z(t) +Hγ⃗(t)θ⃗(t)u(t),

(3)

where G := L[IMN ⊗ (AR)]ΦMN ∈ MnN×nMN ,
H := L[IMN ⊗ (BR)]ΦMN ∈ MnN×mMN .
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System Description

STP-Based Mergence (Cont’d)

Since γ⃗(t) ∈ ∆M , based on the properties of the STP, the merged
system can be rewritten as:

z(t + 1) = [G1 G2 · · · GM ]γ⃗(t)z(t)

+[H1 H2 · · · HM ]γ⃗(t)θ⃗(t)u(t),
(4)

where Gi =


G i
1,1 G i

1,2 ··· G i
1,N

G i
2,1 G i

2,2 ··· G i
2,N

...
...

...
G i
N,1 G i

N,2 ··· G i
N,N

 , and Hi =


H i
1,1 H i

1,2 ··· H i
1,N

H i
2,1 H i

2,2 ··· H i
2,N

...
...

...
H i

N,1 H i
N,2 ··· H i

N,N

 ,

each submatrix G i
α,β ∈ Mn×n and H i

α,β ∈ Mn×m, α, β ∈ [1,N].
We call the above matrices the block form of Gi and Hi ,
i = 1, · · · ,M.
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Reachability Problem

Definition 1

Consider the switched linear system (1) in which the switching
signal is generated by the logical dynamical system (2).

1 A state x ∈ Rn is reachable, if there exists a positive integer
T < ∞, a logical input sequence (γ0, γ1, · · · , γT−1), and an
input sequence (u0, u1, · · · , uT−1), such that for ∀θ⃗0 ∈ ∆N ,

x0 = 0, xT = x .

2 The system is reachable if all states in Rn are reachable.
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Definition 2

Consider the merged system (4). Define the reachable set of state
x = 0 with T -length logical input sequence (γ0, γ1, · · · , γT−1) and
initial logical state α ∈ [1,N] as

Rα
T (γ0, γ1 · · · , γT−1) :=

1TN
[
Im(GγT−1

GγT−2
· · ·Gγ1Hγ0δ

α
N)

]
∪

1TN
[
Im(GγT−1

GγT−2
· · ·Gγ2Hγ1Lγ0δ

α
N)

]
∪

...
∪1TN

[
Im(GγT−1

HγT−2
LγT−3

· · · Lγ1Lγ0δαN)
]

∪1TN
[
Im(HγT−1

LγT−2
· · · Lγ0δαN)

]
.

(5)
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Theorem 1

The switched linear system (1) is reachable under the logically
generated switching signal, if and only if there exists a logical input
sequence (γ0, γ1, · · · , γT−1), such that the reachable set of the
merged system satisfies

N⋂
α=1

Rα
T (γ0, γ1 · · · , γT−1) = Rn. (6)
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SLS under dynamical logic switching
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Controllability Problem

Definition 3

Consider the switched linear system (1) in which the switching
signal is generated by the logical dynamical system (2).

1 A state x ∈ Rn is controllable, if there exist a positive integer
T < ∞, a logical input sequence (γ0, γ1, · · · , γT−1), and an
input sequence (u0, u1, · · · , uT−1), such that for ∀θ⃗0 ∈ ∆N ,

x0 = x , xT = 0.

2 The system is controllable if all the states in Rn are
controllable.
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Theorem 2

The switched linear system (1) is controllable under the logically
generated switching signal, if and only if there exists a logical input
sequence (γ0, γ1, · · · , γT−1), T < ∞, such that starting from any
logical state α ∈ [1,N], the merged system satisfies

1TN
[
Im(GγT−1

GγT−2
· · ·Gγ0δ

α
N)

]
⊂

Rα
T (γ0, γ1 · · · , γT−1).

(7)
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Observability & Reconstructibility Problems

Definition 4

Consider the switched linear system (1) where the switching signal
is generated by the logical dynamical system (2). The system is
observable (reconstructible), if there exists a positive integer
T < ∞ and a logical input sequence (γ0, γ1, · · · , γT−1), such that
the input sequence (u0, u1, · · · , uT−1) and output trajectory
(y0, y1, · · · , yT ) can uniquely determine the initial state x0 (xT ),
regardless of the value of the initial logical state θ0.
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Now we build a dual SLS as

x̃(t + 1) = Ã⋉ σ⃗(t)⋉ x̃(t) + C̃⋉ σ⃗(t)⋉ ũ(t), (8)

where x̃ ∈ Rn, ũ ∈ Rp, Ã = [Ã1 Ã2 · · · Ãq] := [AT
1 AT

2 · · · AT
q ],

C̃ = [C̃1 C̃2 · · · C̃q] := [CT
1 CT

2 · · · CT
q ].

Then we can also build a merged system:

z̃(t + 1) = θ⃗(t + 1)⋉ x̃(t + 1)

= Lγ⃗(t)θ⃗(t)[Ãσ⃗(t)x̃(t) + C̃σ⃗(t)ũ(t)]

= Lγ⃗(t)θ⃗(t)ÃR γ⃗(t)θ⃗(t)x̃(t)

+Lγ⃗(t)θ⃗(t)C̃R γ⃗(t)θ⃗(t)ũ(t)

= L[IMN ⊗ (ÃR)]ΦMN γ⃗(t)θ⃗(t)x̃(t)

+L[IMN ⊗ (C̃R)]ΦMN γ⃗(t)θ⃗(t)ũ(t)

= G̃γ⃗(t)z̃(t) + H̃γ⃗(t)θ⃗(t)ũ(t),

(9)

where G̃ := L[IMN ⊗ (ÃR)]ΦMN ∈ MnN×nMN ,
H̃ := L[IMN ⊗ (C̃R)]ΦMN ∈ MnN×mMN .
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Definition 5

Define the reachable set of state x̃ with T -length logical input
sequence (γ0, γ1, · · · , γT−1) and initial logical state α ∈ [1,N] as

R̃α
T (γ0, γ1 · · · , γT−1) :=

1TN

[
Im(G̃γ0G̃γ1 · · · G̃γT−2

H̃γT−1
LγT−2

· · · Lγ0δαN)
]
∪

1TN

[
Im(G̃γ0G̃γ1 · · · G̃γT−3

H̃γT−2
LγT−3

· · · Lγ0δαN)
]
∪

...

∪1TN
[
Im(G̃γ0H̃γ1Lγ0δ

α
N)

]
∪ 1TN

[
Im(H̃γ0δ

α
N)

]
.

(10)
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Theorem 3

The switched linear system (1) is observable under the logically
generated switching signal, if and only if there exists a logical input
sequence (γ0, γ1, · · · , γT−1), such that the reachable set of the
merged system satisfies

N⋂
α=1

R̃α
T (γ0, γ1 · · · , γT−1) = Rn. (11)

Theorem 4

The switched linear system (1) is reconstructible under the logically
generated switching signal, if and only if there exists a logical input
sequence (γ0, γ1, · · · , γT−1), T < ∞, such that staring from any
logical state α ∈ [1,N], the merged system satisfies

1TN

[
Im(G̃γ0G̃γ1 · · · G̃γT−1

)
]
⊂ R̃α

T (γ0, γ1 · · · , γT−1). (12)

18 / 34



Introduction Preliminaries Main Results

System Realization Problem

We consider two kinds of logical regulating methods:

Case 1: Generating the switching signal sequences that
guarantee the fixed operating times (FOTs) for the
subsystems.

Case 2: Generating the switching signals aligned to a finite
reference sequence.
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ℓ-step Input-State Set Reachability

Consider the logical dynamical system. Denote the input set by
U := {1, 2, · · · ,M} and the state set by X := {1, 2, · · · ,N}, then
Ω ∈ 2U×X \ {∅} is an input-state subset (U × X is isomorphic to
∆MN under logical operations). Now we denote V (Ω) ∈ BMN×1

the index vector of Ω, which is defined as

[V (Ω)]i :=

{
1, i ∈ Ω;
0, i /∈ Ω.

One can see that V (Ω) =
∑

(γ,θ)∈Ω
γ⃗θ⃗.
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For a class of initial state subsets

Ω0 := {Ω0
1,Ω

0
2, · · ·Ω0

α}

and a class of terminal state subsets

Ωd := {Ωd
1 ,Ω

d
2 , · · ·Ωd

β},

where α, β ∈ Z+ are the numbers of the subsets, define their index
matrices as

PΩ0 :=
[
V (Ω0

1) V (Ω0
2) · · · V (Ω0

α)
]
∈ BMN×α,

PΩd :=
[
V (Ωd

1 ) V (Ωd
2 ) · · · V (Ωd

β)
]
∈ BMN×β.

Now we are ready to give the concept of input-state set
reachability of logical dynamical systems.
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Definition 5

Consider the logical dynamical system (2) with a class of initial input-state subsets Ω0 = {Ω0
1,Ω

0
2, · · ·Ω

0
α} and a

class of terminal input-state subsets Ωd = {Ωd
1 ,Ω

d
2 , · · ·Ω

d
β}.

1 The system is ℓ-step input-state reachable from (γ0, θ0) to (γd , θd ) if there exists at least a logical input

sequence (γ(0), γ(1), · · · , γ(ℓ)), where γ(0) = γ0 and γ(ℓ) = γd , such that (γ0, θ0) can be steered to

(γd , θd ).

2 The system is ℓ-step input-state set reachable from Ω0
j to Ωd

i if for some (γ0, θ0) ∈ Ω0
j and some

(γd , θd ) ∈ Ωd
i there exists at least a logical input sequence (γ(0), γ(1), · · · , γ(ℓ)), where γ(0) = γ0

and γ(ℓ) = γd , such that the system is reachable from (γ0, θ0) to (γd , θd ).

3 The system is ℓ-step input-state set reachable at Ω0
j if the system is set reachable from Ω0

j to ∀Ωd
i ∈ Ωd .

4 Ωd
i is globally ℓ-step input-state set reachable if the system is set reachable from ∀Ω0

j ∈ Ω0 to Ωd
i .

5 The system is ℓ-step input-state set reachable from Ω0 to Ωd if for ∀Ω0
j ∈ Ω0 and ∀Ωd

i ∈ Ωd , the

system is ℓ-step input-state set reachable from Ω0
j to Ωd

i .
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Define the input-state matrix of the logical dynamical system (2) as

L := 1ML = [LT LT · · · LT]︸ ︷︷ ︸
M

T
. (13)

Given Ω0 and Ωd , we have the ℓ-step input-state set reachability
matrix of the system (2) as

Cℓ := (Pd
Ω)

T ×B L(ℓ) ×B P0
Ω, (14)

the ℓ-step input-state set reachability can be verified by the
following conditions.
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Proposition 1

Consider the logical dynamical system (2) with a group of initial
input-state subsets {Ω0

1,Ω
0
2, · · ·Ω0

α} and terminal input-state
subsets {Ωd

1 ,Ω
d
2 , · · ·Ωd

β}.
1 The system is ℓ-step input-state set reachable from Ω0

j to Ωd
i ,

if and only if [Cℓ]i ,j = 1.

2 The system is ℓ-step input-state set reachable at Ω0
j , if and

only if Colj(Cℓ) = 1β.

3 Ωd
i is global ℓ-step input-state set reachable, if and only if

Rowi (Cℓ) = 1Tα .

4 The system is ℓ-step input-state set reachable, if and only if
Cℓ = 1β×α.
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Fixed Operating Time Switching

Theorem 5

Consider the system (1) in which the switching signal is generated by the system (2). Denote by
d1, d2, · · · , dq ∈ Z+ ∪ {∞} the FOTs of the subsystems Σ1,Σ2, · · · ,Σq . The switching signal sequences,
which ensure the FOTs, can be generated by the system (2) under some logical inputs, no matter what the initial
logical state is, if and only if

1 For the subsystem Σi whose FOT di = 1, there exists at least one logical input γ ∈ [1,M], such that the
switching signal σ = i can be transferred to other values.

2 For the subsystem Σi whose FOT satisfies 1 < di < ∞, there exists at least one logical input γ ∈ [1,M],
such that the switching signal σ = i can be transferred to other values; and exists at least one logical
input γ ∈ [1,M], such that the switching signal σ = i can keep still.

3 For the subsystem Σi whose FOT satisfies di = ∞, there exists at least one logical input γ ∈ [1,M], such
that the switching signal σ = i can keep still.
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Let I := {i | di = 1}, J := {i | 1 < di < ∞}, and K := {i | di = ∞}. Define a series of input-state subsets

as Oi := {δαMN | RδαMN = δiq}, and define the singleton version of Oi as Õi := {{δαMN} | RδαMN = δiq}.

Theorem 6

The switching signal sequence which guarantees the FOTs of the switched linear system (1) can be generated
regardless of the initial logical state of the logical dynamical system (2), if and only if

1 ∀i ∈ I, the system is 1-step input-state set reachable from every singleton in Õi to ∆MN \ Oi , that is,

PT
{∆MN\Oi}

×B L ×B PÕi
= 1T|Oi |

. (15)

2 ∀i ∈ J , the system is 1-step input-state set reachable from every singleton in Õi to both ∆MN \ Oi and
Oi , that is,

PT
{∆MN\Oi}

×B L ×B PÕi
= 1T|Oi |

,

PT
{Oi}

×B L ×B PÕi
= 1T|Oi |

.
(16)

3 ∀i ∈ K, the system is 1-step input-state set reachable from singleton in Õi to Oi , that is,

PT
{Oi}

×B L ×B PÕi
= 1T|Oi |

. (17)

where L = 1ML = [LT, LT, · · · , LT]︸ ︷︷ ︸
M

T
is the input-state matrix of the logical dynamical system (2).
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Finite Reference Signal Switching

Definition 7

Consider the logical dynamical system (2) with an initial state θ0.
The reference signal sequence (σ0, σ1, · · · , στ ) is called trackable if
there exists a logical input sequence Γ := (γ0, γ1, · · · , γτ ) such that

σ(t, θ0, Γ) = σt , t = 0, 1, · · · , τ.

For a given reference signal sequence (σ0, σ1, · · · , στ ), we define a
series of input-state subsets as

Oσt := {δiMN | RδiMN = σt}, t = 0, 1, · · · , τ.
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Theorem 7

Consider the logical dynamical system (2) with an initial state θ0.
The reference signal sequence (σ0, σ1, · · · , στ ) is trackable, if and
only if

PT
{Oσt }

Lϑ⃗(t − 1) > 0, t = 1, 2, · · · , τ, (18)

where

 ϑ⃗(0) =
(
1M θ⃗(0)

)
∧ P{Oσ0}

ϑ⃗(t) =
(
L×B ϑ⃗(t − 1)

)
∧ P{Oσt }

.
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Illustrative Example

Consider the SLS{
x(t + 1) = Aσ(t)x(t) + Bσ(t)u(t),
y(t) = Cσ(t)x(t),

(19)

whose switching signals σ(t) ∈ {1, 2} are generated by the
following logical dynamical system{

θ⃗(t + 1) = L⋉ γ⃗(t)⋉ θ⃗(t),

σ⃗(t) = R ⋉ γ⃗(t)⋉ θ⃗(t),
(20)
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A1 =

1 2 −1
0 1 0
1 −4 3

 , B1 =

10
0

 , C1 =
[
0 0 1

]
,

A2 =

−2 2 1
0 −2 0
1 −4 0

 , B2 =

01
0

 , C2 =
[
0 1 0

]
,

L = δ4[1, 1, 2, 4, 4, 4, 3, 3],

R = δ2[2, 2, 1, 1, 1, 2, 2, 1].

With the equation (3), one has G =
[
G1,G2

]
.
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G1 =



−2 2 1 −2 2 1 0 0 0 0 0 0
0 −2 0 0 −2 0 0 0 0 0 0 0
1 −4 0 1 −4 0 0 0 0 0 0 0
0 0 0 0 0 0 1 2 −1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 −4 3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 2 −1
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 −4 3


:=


G 1
1,1 G 1

1,2 0 0

0 0 G 1
2,3 0

0 0 0 0
0 0 0 G 1

4,4

 ,

G2 =



0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 2 1 1 2 −1
0 0 0 0 0 0 0 −2 0 0 1 0
0 0 0 0 0 0 1 −4 0 1 −4 3
1 2 −1 −2 2 1 0 0 0 0 0 0
0 1 0 0 −2 0 0 0 0 0 0 0
1 −4 3 1 −4 0 0 0 0 0 0 0


:=


0 0 0 0
0 0 0 0
0 0 G 2

3,3 G 2
3,4

G 2
4,1 G 2

4,2 0 0

 .
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We first check the control attractors, as well as their attractor
basins, of the logical dynamical system (20). We can find that all
the logical states are control attractors and the attract basin of δ44
is the whole state space ∆4. Hence it is only needed to check if
the equations (6), (7), (11), and (12) hold for α = 4.
Using Algorithm 1, we have

G3 =


∗ G 1

1,2G
1
2,3G

2
3,4

∗ G 1
2,3G

2
3,3G

2
3,4 + G 1

2,3G
2
3,4G

1
4,4

∗ G 2
3,3G

2
3,3G

2
3,4 + G 2

3,3G
2
3,4G

1
4,4 + G 2

3,4G
1
4,4G

1
4,4

∗ G 2
4,2G

1
2,3G

2
3,4 + G 1

4,4G
1
4,4G

1
4,4

 ,

where the first three columns of blocks are omitted because only
the 4-th column of the block matters.
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It can be found that the equations (6) and (7) hold for logical
input sequences

(2, 2, 2), (2, 2, 1), (2, 1, 2), (2, 1, 1), (1, 2, 2).

Thus, the SLS is reachable and controllable.
Using a similar computation process, one can also conclude that
the system is observable and reconstructible: with α = 4, the
equations (11), and (12) hold for all the 3-length logical input
sequences except (2, 2, 2).
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Thanks for your attention!
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