Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion 0000000

Aggregation and Identification of Finite-Valued Networks via Bisimulation

Zhengping Ji

Academy of Mathematics and Systems Science, Chinese Academy of Sciences

January 9, 2025 Kunming, China

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion

Background: Externally Equivalent Systems

In systems engineering, externally equivalent states can be viewed as identical, which may simplify the system structures.

(a) Equivalent circuits in a photovoltaic power plant [4]

(b) Synchronized systems [7]

Aggregation of BCNs

Realization of BCNs

Conclusion

System Equivalence: Aims and Difficulties

We hope to find an appropriate way to characterize the similarity or equivalence between systems, neither too strict nor too rough.

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion 0000000

Background: Model Reduction via Equivalence

Using equivalence, we may simplify the analysis of systems and achieve lower computational complexity.

Figure 2: Model reduction of control networks

When the inner dynamic rule is known, the model may be reduced via equivalence; conversely, when only the input-output transition is known, one may construct equivalent systems to identify or realize the given I/O relation.

Aggregation of BCNs

Realization of BCNs

Conclusion

Background: System Identification and Realization

Given the input-output data of a system, we would like to reconstruct its inner state space.

Figure 3: Identification of systems

Aggregation of BCNs

Realization of BCNs

Conclusion

Background: System Identification and Realization

Given the input-output data of a system, we would like to reconstruct its inner state space.

Figure 3: Identification of systems

Question:

What if the system is not observable? What if the inner space is of unknown dimension?

Aggregation of BCNs

Realization of BCNs

Conclusion 0000000

Outline of the Talk

- Basic notions and examples of bisimulation
- Application 1: aggregated (bi-)simulation of Boolean networks
- Application 2: identification of Boolean networks

Aggregation of BCNs

Realization of BCNs

Conclusion

Basic Setting: Discrete Transition Systems

Definition 1 (Transition Systems)

A tuple $T = (X, U, \Sigma, O, h)$ is called a transition system, where

- (i) X is the set of states,
- (ii) U is the set of inputs (controls or actions),
- (iii) $\Sigma: X \times U \to 2^X$ is a transition mapping,
- (iv) O is the observations,
- (v) $h: X \to O$: observation mapping.
- If $|\Sigma(x,u)| \leq 1$, T is said to be deterministic.

Figure 4: A transition system

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion

Bisimulation of Transition Systems

Definition 2 (Simulation and Bisimulation)

Consider two transition systems $T_i = (X_i, U_i, \Sigma_i, O_i, h_i)$, i = 1, 2. If there exists a relation $\mathcal{R} \subset X_1 \times X_2$, s.t.

- $\forall x_1 \in X_1, \exists x_2 \in X_2$, s.t. $(x_1, x_2) \in \mathcal{R}$;
- $\forall (x_1, x_2) \in \mathcal{R}$, $\forall u_1$, $\exists u_2$, s.t. $(\Sigma_1(x_1, u_1), \Sigma_2(x_2, u_2)) \cap \mathcal{R} \neq \varnothing$,

then \mathcal{R} is called a simulation of T_1 by T_2 . If further $\mathcal{R}^{-1} \subset X_2 \times X_1$ is a simulation of T_2 by T_1 , then \mathcal{R} is called a bisimulation of T_1 , T_2 .

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion 0000000

Quotient Systems of Transition Systems

A special type of the simulation is the quotient system under observational equivalence.

Definition 3 (Quotient Systems)

Let $T=(X,U,\Sigma,O,h)$ be a transition system. $T/\sim:=(X/\sim,U,\Sigma_{\sim},O,h_{\sim})$ is called the quotient system of T under observational equivalence, where

- (i) $X/ \sim = \{\bar{x} | x \in X\}$ is the set of observational equivalence classes, i.e. $x_1 \sim x_2 \Leftrightarrow h(x_1) = h(x_2)$. $\bar{x} := \{y | y \sim x\}$.
- (ii) U: (original) set of inputs.
- (iii) $\Sigma_{\sim}: X/ \sim \times U \to 2^{X/\sim}$ defined as follows: Assume $\bar{x}_i, \bar{x}_j \in X/\sim$. $\bar{x}_j \in \Sigma_{\sim}(\bar{x}_i, u)$, if and only if $\exists x_i \in \bar{x}_i, x_j \in \bar{x}_j$, s.t. $x_j \in \Sigma(x_i, u)$.

(iv) O: (original) set of observations.

 $(\mathbf{v}) \ h_{\sim}: X/ \sim \to O \text{ is defined as } h_{\sim}(\bar{x}):=h(x) \text{, } \forall \bar{x} \in X/ \sim.$

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion

An Example of Quotient System

Consider a transition system $T = (X, U, \Sigma, O, h)$ where

$$\begin{split} &X = \{x_1, x_2, x_3, x_4\}, \ U = \{u_1, u_2\}, \ O = \{O_1, O_2, O_3\}, \\ &\Sigma(x_1, u_1) = \{x_2, x_3\}, \ \Sigma(x_2, u_1) = \{x_2, x_3\}, \ \Sigma(x_2, u_2) = \{x_4\}, \\ &\Sigma(x_3, \sigma_2) = \{x_2, x_3\}, \ \Sigma(x_4, \sigma_1) = \{x_2, x_4\}, \\ &h(x_1) = O_1, \ h(x_2) = h(x_4) = O_2, \ h(x_3) = O_3, \end{split}$$

Construct its quotient system, as depicted in figures 4(a)4(b):

(a) A transition system T $\,$ (b) Its quotient system T/\sim

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion

Bisimulation From Observational Equivalence

Definition 4

Consider a transition system $T = (X, U, \Sigma, O, h)$. Assume $x_1 \sim x_2$ are observational equivalent, if $\forall u \in U$ and $x'_1 \in \Sigma(x_1, u)$, there exists an $x'_2 \in \Sigma(x_2, u)$ such that $x'_1 \sim x'_2$, then we say $x_1 \approx x_2$. If $\forall x_1, x_2, x_1 \sim x_2 \Rightarrow x_1 \approx x_2$, then T/\sim is called a bisimulation of T, denoted by T/\approx .

Obviously, the above definition coincides with the general definition of bisimulation by taking $\mathcal{R} := \{(x, \bar{x}) | x \in X\} \subset T \times T/\sim$.

Bisimulation: Definition & Examples 00000● Aggregation of BCNs

Realization of BCNs

Conclusion 0000000

Quotient Systems as Bisimulations

Theorem 5 [3]

The observational equivalence \sim is a bisimulation for a finite transition system $T = (X, U, \Sigma, O, h)$ if and only if $\forall \bar{x} \in X / \sim$, $\forall u \in U$, $P(\bar{x}, u)$ is either empty or a finite union of equivalent classes, where

$$P(\bar{x}, u) := \{ y \in X | \exists x' \sim x, \ x' \in \Sigma(y, u) \}.$$

(a) A bisimulation

(b) Not a bisimulation

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion

Aggregation of Boolean Networks: Motivation

A chief bottleneck of algebraic state space representation (ASSR) approach to finite-valued networks (FVN) is the curse of dimension.

Aggregation of BCNs

Realization of BCNs

Conclusion 0000000

Review: ASSR of Boolean Control Networks

Consider a Boolean control network

$$\begin{cases} x_i(t+1) = f_i(x_1(t), \cdots, x_n(t); u_1(t), \cdots, u_m(t)), \\ y_k(t) = g_k(x_1(t), \cdots, x_n(t)) \end{cases}$$
(1)

where $\{x_i\}_{i=1}^n$, $\{y_k\}_{k=1}^p$, $\{u_j\}_{j=1}^m \subset \mathcal{D}_2$. Denote by L_i , H_k the structure matrices of the functions f_i , g_k , $i = 1, \cdots, n$, $k = 1, \cdots, p$ respectively, let $x := \ltimes_{i=1}^n x_i$, $u := \ltimes_{j=1}^m u_j$, $y := \ltimes_{k=1}^p y_k$, then the ASSR of (1) is

$$\begin{cases} x(t+1) = Lu(t)x(t), \\ y(t) = H(t)x(t), \end{cases}$$
(2)

where $L := L_1 * \cdots * L_n$, $H := H_i * \cdots * H_p$.

Realization of BCNs

Conclusion 0000000

Generalization: ASSR of Finite-Valued Transition Systems

Proposition 6

Consider a finite-valued transition system $T = (X, U, \Sigma, O, h)$ with |X| = n, |U| = m, $|O| = \ell$. Using vector form expressions that $X \sim \Delta_n$, $U \sim \Delta_m$, and $O \sim \Delta_\ell$, the dynamics of T can be expressed into its ASSR as

$$\begin{cases} x(t+1) = Lu(t)x(t), \\ y(t) = Hx(t), \end{cases}$$
(3)

where $x(t) \in \mathcal{B}^n$, $u(t) \in \Delta_m$, $y(t) \in \mathcal{B}^\ell$ and $L \in \mathcal{B}_{n \times mn}$, $H \in \mathcal{L}_{\ell \times n}$.

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion

ASSR of Quotient Networks as Transition Systems

Theorem 7

Consider a transition system

$$\begin{cases} x(t+1) = Lu(t)x(t), \\ y(t) = Hx(t), \end{cases}$$
(4)

where x(t), $y(t) = \mathcal{B}^p$ are Boolean vectors, $u(t) \in \Delta_m$ is a logical vector, $L \in \mathcal{B}_{n \times mn}$, $H \in \mathcal{L}_{p \times n}$. Then the quotient system is

$$\begin{cases} X(t+1) = L_q u(t) X(t), \\ y(t) = H_q X(t), \end{cases}$$
(5)

where $X_i \in X/\sim$ is the equivalence class of y_i , $i \in [1,q]$,

$$L_q = H \times_{\mathcal{B}} L \times_{\mathcal{B}} (I_m \otimes H^T), \quad H_q = I_p.$$
(6)

where $\times_{\mathcal{B}}$ is the Boolean product of matrices.

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion 0000000

Partition and Aggregation of BCNs

Proposition 8

Assume $A \subset N$ is a block of nodes with $\{x_{i_1}, \cdots, x_{i_\alpha}\}$ as its block inputs, and $\{\{x_{j_1}, \cdots, x_{j_\beta}\}\)$ as its block outputs. Then the dynamic subnetwork of A can be expressed as a controlled network Σ_A with block control $v_\ell := x_{i_\ell}, \ \ell \in [1, \alpha]$, and block output $y_k := x_{j_k}, \ k \in [1, \beta]$, replacing block A in Σ by this block control system Σ_A does not affect the dynamics of the rest part of Σ .

Aggregation of BCNs

Realization of BCNs

Conclusion 0000000

An Example

Denote by N the set of nodes of Σ , and let $A = \{x_{i+1}, x_{i+2}, \cdots, x_{i+\mu}\} \subset N$, $\mu > 1$ be a subset of nodes.

The dynamic equations of A, denoted by Σ_A , are

$$\begin{cases} x_{i+1}(t+1) = [(x_{i}(t)\nabla x_{i+1}(t)) \wedge u(t)] \\ & \vee [(x_{i}(t) \leftrightarrow x_{i+1}(t)) \wedge \neg u(t)], \\ x_{i+2}(t+1) = [(x_{i+1}(t)\nabla x_{i+2}(t)) \wedge u(t)] \\ & \vee [(x_{i+1}(t) \leftrightarrow x_{i+2}(t)) \wedge \neg u(t)], \\ \vdots \\ x_{i+\mu}(t+1) = [(x_{i+\mu-1}(t)\nabla x_{i+\mu}(t)) \wedge u(t)] \\ & \vee [(x_{i+\mu-1}(t) \leftrightarrow x_{i+\mu}(t)) \wedge \neg u(t)]. \end{cases}$$
(7)
$$y(t) = x_{i+\mu}(t).$$

where \wedge,\vee,\neg are the conjunction, disjunction, and negation operators respectively.

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion 0000000

An Example (Cont'd)

By Theorem 7, the quotient system Σ_A/\sim is obtained as

$$y(t+1) = \delta_2[2, 1, 1, 2, 1, 2, 2, 1]u(t)v(t)y(t),$$
(8)

where $y(t) = x_{i+\mu}(t)$, $v(t) = x_i(t)$. Obviously Σ_A/\sim is a deterministic system.

The dimension of the subnetwork is reduced from 2^{μ} to 2.

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion

An Example (Cont'd)

By Theorem 7, the quotient system Σ_A/\sim is obtained as

$$y(t+1) = \delta_2[2, 1, 1, 2, 1, 2, 2, 1]u(t)v(t)y(t),$$
(8)

where $y(t) = x_{i+\mu}(t)$, $v(t) = x_i(t)$. Obviously Σ_A/\sim is a deterministic system.

The dimension of the subnetwork is reduced from 2^{μ} to 2.

Question:

What if the quotient system is not deterministic?

Aggregation of BCNs

Realization of BCNs

Conclusion

Aggregated Simulation of Boolean Networks

We execute an aggregated simulation of BCN in two steps.

Proposition 9

Let Σ be a networked system with network graph (N, E), $A \subset N$ is an aggregate-able subset. If $\Sigma_A / \sim = \Sigma_A / \approx$ is a bisimulation, then the aggregation does not affect the dynamics of the overall system.

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion

Approximate Bisimulation of Aggregated BCN

Consider the aggregated ASSR with respect to the block A. Set

$$M_A := H_A L_A (I_{k^{m+\alpha}} \otimes H_A^T) = (m_{i,j}) \in \mathcal{M}_{\xi \times \eta}$$

Denote $m_j := \sum_{i=1}^{\xi} m_{i,j}$, $j \in [1, \eta]$, define a probabilistic system, denoted by Σ_A^P , as follows:

$$y(t+1) = M^{i_1, i_2, \cdots, i_\eta} u(t) v(t) y(t), \quad i_j \in [1, \xi], \ j \in [1, \eta],$$

where

$$M^{i_1,i_2,\cdots,i_\eta} = \delta_{\xi}[i_1,i_2,\cdots,i_\eta],$$

with probability

$$p_{i_1,i_2,\cdots,i_\eta} = \frac{\prod_{j=1}^{\eta} m_{i_j,j}}{\prod_{j=1}^{\eta} m_j}$$

 Σ^P_A is called the **approximate bisimulation** of the block A.

Introd	uction

Aggregation of BCNs

Realization of BCNs

Conclusion

An Example

The following system illustrates the two-step aggregated simulation of BCN. Let $A := \{x_2, x_3, x_4, x_5\}$.

 $x_6 \quad y = x_6$

Figure 7: An Aggregated BN

ASSR of A:
$$\begin{cases} z(t+1) = L_A v(t) z(t) = \delta_{16}[2, \cdots, 14] v(t) \ltimes_{i=1}^4 z_i(t) \\ y(t) = H z(t) = \delta_2[1, 1, \cdots, 2, 2] \ltimes_{i=1}^4 z_i(t), \\ \text{where } z_1 = x_2, \ z_2 = x_3, \ z_3 = x_4, \ z_4 = x_5, \ v = x_1, \ y = x_4. \end{cases}$$

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion 0000000

An Example (Cont'd)

Compressing A into one single node, we derive the quotient system Σ_A/\sim with the following ASSR:

$$\begin{cases} w(t+1) = Lv(t)w(t), \\ y(t) = w(t), \end{cases}$$

where $L = H \times_{\mathcal{B}} L_A \times_{\mathcal{B}} (I_2 \otimes H^T) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$.

Next, we proceed to construct the approximate identification of the block.

Aggregation of BCNs

Realization of BCNs

Conclusion 0000000

An Example (Cont'd)

Recall the system in Figure 4. The weighted structure matrix of Σ_A/\sim can be calculated as follows:

$$M_A = HL_A(I_2 \otimes H^T) = \begin{bmatrix} 6 & 6 & 6 & 6 \\ 2 & 2 & 2 & 2 \end{bmatrix}.$$
(9)

Then the simulation-aggregation is using the following probabilistic network Σ_A^P to replace A:

$$z(t+1) = L_A^P v(t) z(t),$$
 (10)

where

$$L_A^P = \begin{bmatrix} 2/3 & 2/3 & 2/3 & 2/3 \\ 1/3 & 1/3 & 1/3 & 1/3 \end{bmatrix}.$$

Outlook: Aggregation-Simulation of Large-Scale BCNs

Using the aggregation-(bi-)simulation method, we may decompose a BCN into probabilistic blocks and analyse them separately (topological structures, control properties, etc.), which is a trade-off between computational load and precision of approximation.

Figure 8: Aggregation of a BN [9]

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion 0000000

Outlook: Aggregation-Simulation of Large-Scale BCNs

Possible approaches for designing aggregate-able blocks:

- Balancing method
- Pinning control
- Invariant spaces and minimal bisimulation

Aggregation of BCNs

Realization of BCNs •000000000 Conclusion 0000000

Reduction and Realization

In the reduction (aggregation) problem, the inner dynamics is known; in the realization problem, the only available data is the input-output relation.

Aggregation of BCNs

Realization of BCNs

Conclusion 0000000

Reduction and Realization

In the reduction (aggregation) problem, the inner dynamics is known; in the realization problem, the only available data is the input-output relation.

Question:

How many nodes do we need to reconstruct an input-output transition rule?

Aggregation of BCNs

Realization of BCNs

Conclusion

Reduction and Realization

In the reduction (aggregation) problem, the inner dynamics is known; in the realization problem, the only available data is the input-output relation.

Question:

How many nodes do we need to reconstruct an input-output transition rule?

Proposition 10

To construct an identification of a network with p output nodes, one needs a network of at most 2p state nodes.

The proof follows from solving the equation $H \times_{\mathcal{B}} L_A \times_{\mathcal{B}} (I_2 \otimes H^T) = \mathbf{1}_{k^p \times k^{m+p}}.$

Identification Algorithm

Following Proposition 10, we propose an identification algorithm to reconstruct structure matrices from given input-output data.

Given a series $S := ((u_0, y_0), \cdots, (u_T, y_T), \cdots)$, where $\{u_t\}_{t \ge 0} \subset \Delta_{k^m}$, $\{y_t\}_{t \ge 0} \subset \Delta_{k^p}$.

• Step 0. For $\forall q, s \in [1, k^p]$ and $\forall r \in [1, k^m]$, set $\ell_s^r := 1$, $\alpha_{qs}^r := 0$. Set $L := \mathbf{0}_{k^m} \otimes I_{k^{2p}}$ and denote by $L = [L_1, \cdots, L_{k^m}]$, where $L_i \in \mathcal{L}_{k^{2p} \times k^{2p}}$ is the *i*-th block of $L, i \in [1, k^m]$.

• Step t > 0. Consider the case that $(u_{t-1}, y_{t-1}) = (\delta_{k^m}^{i_0}, \delta_{k^m}^{j_0})$ and $(u_t, y_t) = (\delta_{k^m}^{i_1}, \delta_{k^m}^{j_1})$. If $\alpha_{j_0 j_1}^{i_0} \neq 0$ or $\ell_{j_0}^{i_0} = k^p$, go to Step t + 1. Else, for $\forall j \in [(j_0 - 1)k^p + \ell_{j_0}^{i_0}, j_0k^p]$, set $\operatorname{Col}_j L_{i_0} := \delta_{k^{2p}}^{j_1k^p}$ and $\ell_{j_0}^{i_0} := \ell_{j_0}^{i_0} + 1$, $\alpha_{j_0 j_1}^{i_0} := \alpha_{j_0 j_1}^{i_0} + 1$, go to Step t + 1. (If the sequence is of finite length T, stop at Step T.)

Aggregation of BCNs

Realization of BCNs

Conclusion 0000000

Realization of the Network

The identification (realization) algorithm is described in the following figure.

Figure 9: Illustration of the identification algorithm

Consider the following series of input-output data of length T = 20, with one Boolean input and two Boolean outputs.

 $\begin{array}{l} (\delta_2^1, \delta_4^4), (\delta_2^1, \delta_4^2), (\delta_2^2, \delta_4^3), (\delta_2^2, \delta_4^2), (\delta_2^2, \delta_4^4), (\delta_2^2, \delta_4^2), (\delta_2^2, \delta_4^1), \\ (\delta_2^1, \delta_4^3), (\delta_2^1, \delta_4^4), (\delta_2^1, \delta_4^1), (\delta_2^2, \delta_4^1), (\delta_2^2, \delta_4^3), (\delta_2^2, \delta_4^1), (\delta_2^1, \delta_4^2), \\ (\delta_2^1, \delta_4^3), (\delta_2^1, \delta_4^4), (\delta_2^2, \delta_4^4), (\delta_2^1, \delta_4^2), (\delta_2^1, \delta_4^1), (\delta_2^2, \delta_4^2), \cdots \end{array}$

Applying the identification algorithm, we construct a Boolean network of one input, four states, and two outputs, with ASSR as (2) where the structure matrices are

$$\begin{split} L &= \delta_{16} \left[4,8,8,8,12,4,4,4,16,16,16,16,16,8,4,16, \\ & 16,12,8,8,8,16,4,4,4,8,4,4,4,8,8,8,8 \right], \\ H &= I_4 \otimes \mathbf{1}_4. \end{split}$$

Introduction 00000	Bisimulation: Definition & Examples	Aggregation of BCNs	Realization of BCNs 0000€00000	Conclusion 0000000
An Eva	mnle			

The transition matrix of the output nodes according to the given data is

$$\tilde{L} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}.$$
(11)

One can check that $H \times_{\mathcal{B}} L \times_{\mathcal{B}} (I_2 \otimes H^T) = \tilde{L}$, that is to say, the transition system defined by \tilde{L} is indeed generated from the network defined by L, H under observational equivalence.

Introduction 00000	Bisimulation: Definition & Examples	Aggregation of BCNs	Realization of BCNs 0000€00000	Conclusion 0000000
$\Delta n + v_{2}$	mnle			

The transition matrix of the output nodes according to the given data is

$$\tilde{L} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}.$$
(11)

One can check that $H \times_{\mathcal{B}} L \times_{\mathcal{B}} (I_2 \otimes H^T) = \tilde{L}$, that is to say, the transition system defined by \tilde{L} is indeed generated from the network defined by L, H under observational equivalence.

Question:

How to make the identification algorithm more precise?

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion 0000000

Probabilistic Identification Algorithm

Given a sequence

$$S := ((u_0, y_0), \cdots, (u_T, y_T), \cdots),$$

where $\{u_t\}_{t \ge 0} \subset \Delta_{k^m}$, $\{y_t\}_{t \ge 0} \subset \Delta_{k^p}$. Choose an integer $d \ge p$.

- Step 0. Set $N_{j\ell}^i = 1$, $i \in [1, k^m]$, $j, \ell \in [1, k^p]$. Set $L := \mathbf{0}_{k^m} \otimes I_{k^{d+p}}$, and denote $L = [L_1, \cdots, L_{k^m}]$, where $L_i \in \mathcal{L}_{k^{d+p} \times k^{d+p}}$ is the *i*-th block of L, $i = 1, \cdots, k^m$.
- Step t > 0. Assume $(u_{t-1}, y_{t-1}) = (\delta_{k^m}^{i_0}, \delta_{k^p}^{j_0})$, and $(u_t, y_t) = (\delta_{k^m}^{i_1}, \delta_{k^p}^{j_1})$. Set $N_{j_0j_1}^{i_0} := N_{j_0j_1}^{i_0} + 1$, $S_j^i := \{\ell \in [1, k^p] \mid N_{j\ell}^i > 1\}$. Assume that $S_{j_0}^{i_0} = \{\ell_1, \dots, \ell_q\}$, $q \in [1, k^p]$. For $\forall i \in [1, k^m]$, $\forall j \in [1, k^p]$, $\forall \ell \in S_j^i$, set

$$\beta_{j\ell}^i := \varphi \Big(k^d \frac{N_{j\ell}}{\sum_{s \in S_j^i} N_{js}^i} \Big),$$

where $\varphi(\cdot)$ is the round down function.

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion 0000000

Identification Algorithm

• Let
$$r_j := (j-1)k^d$$
, $j \in [1, k^p]$. Set

$$\begin{aligned} \operatorname{Col}_{s_1} L_{i_0} &:= \delta_{k^{d+p}}^{\ell_1 k^d}, \\ \forall s_1 \in \left[r_{j_0} + 1, r_{j_0} + \beta_{j_0 \ell_1}^{i_0} \right], \\ \operatorname{Col}_{s_2} L_{i_0} &:= \delta_{k^{d+p}}^{\ell_2 k^d}, \\ \forall s_2 \in \left[r_{j_0} + \beta_{j_0 \ell_1}^{i_0} + 1, r_{j_0} + \beta_{j_0 \ell_1}^{i_0} + \beta_{j_0 \ell_2}^{i_0} \right], \\ \vdots \\ \operatorname{Col}_{s_q} L_{i_0} &:= \delta_{k^{d+p}}^{\ell_q k^d}, \\ \forall s_q \in \left[r_{j_0} + \sum_{t=0}^{q-1} \beta_{j_0 \ell_t}^{i_0} + 1, j_0 k^d \right], \end{aligned}$$

then go to **Step** t + 1.

• If the series is of finite length T, stop at **Step** T.

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion

Probabilistic Realization of Finite-Valued Networks

The probabilistic identification (realization) algorithm is described in the following figure.

Figure 10: Illustration of the identification algorithm

Introduction	

Aggregation of BCNs

Realization of BCNs 00000000●0 Conclusion

An Example

Consider the input-output sequence in the previous example. Applying the identification algorithm, one will solve the structure matrices of the 4-state, 1-input, 2-output network as

$$L = \delta_{16} [4, 4, 8, 8, 12, 12, 4, 4, 16, 16, 16, 16, 16, 8, 4, 16, 16, 12, 12, 8, 8, 16, 16, 4, 4, 8, 8, 4, 4, 8, 8, 8, 8]; H = I_4 \otimes \mathbf{1}_4.$$

Calculating the approximate bisimulation of this system yields

$$\tilde{L}' = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{4} & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{4} & \frac{1}{2} & 0 & \frac{1}{2} & 1 \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \end{bmatrix}$$

One can see that this transition matrix coincides with the frequency of different transitions appearing in the given sequence S; with the same accessibility property as the matrix (11).

Aggregation of BCNs

Realization of BCNs 00000000● Conclusion 0000000

Limit of the Approximation

Let S be an input-output sequence of length t from a k-valued network Σ_0 with p outputs and m inputs. Denote by Σ the approximate simulation of Σ_0 . Denote by Σ_S the network constructed from S following the probabilistic identification algorithm, of d + p inner state variables, and let Σ_t^d be the approximate simulation of Σ_S .

Theorem 11

For $u \in U$, $i, j \in X$, denote by $n_i^u(t)$ the frequency of input-output pair (u, i) in S, denote by $p_{i,j}^u(d, t)$ the probability of transition in Σ_t^d from output i to output j under input u, and $p_{i,j}^u$ the probability of the same transition in Σ . If $\lim_{t\to\infty} n_i^u(t) = \infty$, then $p_{i,j}^u(d_1, t) \leq p_{i,j}^u(d_2, t)$ for all $d_1 > d_2$, and

$$\lim_{d \to \infty, t \to \infty} p_{i,j}^u(d,t) = p_{i,j}^u.$$

Meaning: the reconstructed network converges to the approximate bisimulation of the original system.

Conclusion

Main contribution of our work:

- Model reduction of large-scale networks via observational equivalence;
- Identification and realization of the networks with minimal node sets.

Meanwhile, the bisimulation approach has application in switched systems and continuous-time multi-agent systems.

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion 000000

Perspective: Switched Systems

Consider a hybrid linear system

$$\xi(t+1) = A_{y(t)}\xi(t) + B_{y(t)}\eta(t),$$
(12)

where $\xi(t) \in \mathbb{R}^n$ is the state, $\eta(t) \in \mathbb{R}^m$ is the control, the switching signal y(t) is generated by logical control system (2).

Assume $\mathbb{R}^n = \text{Im}(A_1) \oplus \cdots \oplus \text{Im}(A_p)$, $\text{rank}(B_i) = \text{rank}(A_i)$, $\text{Im}(B_i) = \text{Im}(A_i)$, $i = 1, \cdots, p$. We consider the reachability of two given points $x, y \in \mathbb{R}^n$ with respect to the above system.

Proposition 12

 $\forall x, y \in \mathbb{R}^n$. Assume $x \in \text{Im}(A_i)$, $y \in \text{Im}(A_j)$, then $\exists T > 0$, a set of switching and controls $\{u(0), \cdots, u(T)\}$ driving a trajectory of (2) from x to y, if and only if, $\tilde{L}_{i,j} \neq 0$.

Aggregation of BCNs

Realization of BCNs

Conclusion

Bisimulation View of Continuous and Discrete Transitions

Continuous-time nonlinear systems

$$\begin{cases} \dot{x}(t) = f(x(t)) + \sum_{i=1}^{m} u^{i}(t)g_{i}(x(t)) \\ y(t) = h(x(t)) \\ & \downarrow \\ \dot{\tilde{y}}(t) = M\tilde{y}(t) + Fu(t) \end{cases}$$

 (x,\tilde{y}) - Bisimulation; $\mathrm{Span}\{H\}$ - Invariant subspace; $\tilde{y}(t)$ - Transition in quotients. Finite transition systems

$$\begin{cases} x(t+1) = Lx(t)u(t) \\ y(t) = Hx(t) \\ & \downarrow \\ \tilde{y}(t+1) = M\tilde{y}(t)u(t) \end{cases}$$

Aggregation of BCNs

Realization of BCNs

Conclusion

Perspective: Bisimulation of Continuous-Time Systems

Quotient representation gives rise to the observer realization of the control systems.

Figure 11: S-System with I-O vs SO-System

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion

Further Studies

We propose the following topics for future work:

- Analysis of switched systems via transition representation;
- 2 Ensemble control of large-scale networks via (bi-)simulation;
- **③** Reduction of finite-valued networks by minimal bisimulation.

Introd	uction

References

Z. Ji, X. Zhang, and D. Cheng, Aggregated (bi-)simulation and identification of finite-valued networks, IEEE Transactions on Automatic Control, (2025). https://ieeexplore.ieee.org/document/10771692

D. Cheng, X. Zhang, and Z. Ji, Transition system representation of Boolean control networks, *Unmanned Systems*, 12 (2023), no. 2, 239-247.

C. Belta, B. Yordanov, and E. A. Gol, *Formal methods for discrete-time dynamical systems*. Cham: Springer International Publishing, 2017.

P. Chao, W. Li, X. Liang, Y. Shuai, F. Sun, and Y. Ge, A comprehensive review on dynamic equivalent modeling of large photovoltaic power plants. Solar Energy, 210 (2020), 87-100.

X. Zhang, M. Meng, and Z. Ji, Analysis of discrete-time switched linear systems under logic dynamic switching, *IEEE Transactions on Neural Networks and Learning Systems*, (2024). https://ieeexplore.ieee.org/document/10744584

D. H. Johnson, Origins of the equivalent circuit concept: the current-source equivalent. Proceedings of the IEEE, 91 (2003), no. 5, 817-821.

A. C. J. Luo, Dynamical system synchronization. New York: Springer, 2013.

D. Sangiorgi, Introduction to bisimulation and coinduction. Cambridge University Press, 2011.

Y. Zhao, J. Kim, M. Filippone, Aggregation algorithm towards large-scale Boolean network analysis, IEEE Transactions on Automatic Control, 58 (2013), no. 8, 1976-1985.

S. Zhu, J. Cao, L. Lin, J. Lam, and S. I. Azuma, Towards stabilizable large-scale Boolean networks by controlling the minimal set of nodes, *IEEE Transactions on Automatic Control*, 69 (2024), no. 1, 174-188.

Bisimulation: Definition & Examples

Aggregation of BCNs

Realization of BCNs

Conclusion

Thanks for your attention!