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Background: Externally Equivalent Systems

In systems engineering, externally equivalent states can be viewed as
identical, which may simplify the system structures.

⇔

(a) Equivalent circuits in a photovoltaic power plant [4]

(b) Synchronized systems [7] 2 / 43
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System Equivalence: Aims and Difficulties

We hope to find an appropriate way to characterize the similarity
or equivalence between systems, neither too strict nor too rough.

-
Rough Strictt t t t ttt

IdenticalInput-output equivalent

Trace equivalent

(Bi-)simulation Diffeomorphic

Isometric· · ·

(c) Diffeomorphic equivalence: too strict (d) I/O equivalence: too rough [6]

Figure 1: equivalence
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Background: Model Reduction via Equivalence

Using equivalence, we may simplify the analysis of systems and
achieve lower computational complexity.
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Figure 1

Model reduction with preservation of network structure.

of G—then we have a network flow model (5, 42). Furthermore, if D = Dout—that is , � = −L—
then Equation 4 becomes a consensus network, or a continuous-time averaging system (39). The
coupling rule in Equation 3 becomes

vi(t ) = −
n∑

j=1, j �=i
[A]i j

[
xi(t ) − x j (t )

]
, 5.

which is known as the diffusive coupling rule. For both � = −L� and � = −L, the system in
Equation 4 is semistable (or semiconvergent)—that is, limt → ∞e�t exists for any initial condition
x(0). Specifically, when G is strongly connected, limt → ∞e−Lt is equal to 1ω�, with ω, satisfying
1�ω = 1, the left eigenvector of L for eigenvalue 0.

Definition 1. A network system ẋ(t ) = �x(t ) achieves synchronization if

lim
t→∞

[
xi(t ) − x j (t )

] = 0, ∀i, j ∈ V , 6.

holds for all initial conditions x(0).

The approximation of the network system represented by Equation 4 aims for a reduced net-
work consisting of a smaller number of nodes that captures essential properties of the original
network. Specifically, a model reduction problem (Figure 1) is formulated to find a reduced-order
model

˙̂x(t ) = �̂x̂(t ) + F̂u(t ), ŷ(t ) = Ĥx̂(t ), 7.

where x̂ ∈ Rr (r < n), ŷ ∈ Rq, such that (a) �̂ ∈ Rr×r is interpretable as a reduced graph and
(b) the approximation error is minimized between the original and the reduced-order models.
The approximation error is usually evaluated by the H∞ or H2 norms of η(s) − η̂(s),

η(s) := H (sIn − �)−1F , η̂(s) := Ĥ (sIr − �̂)−1F̂ . 8.

2.2.2. Networked linear systems. The network model in Equation 4 can be extended beyond
single integrators to consider each node as a high-order linear subsystem:

ẋi(t ) = Aixi(t ) + Bivi(t ), yi(t ) = Cixi(t ), 9.

where xi ∈ R�i , vi ∈ Rmi , and yi ∈ Rμi are internal states, inputs, and outputs, respectively. Sup-
pose that n subsystems are interconnected through the relations vi(t ) = ∑n

j=1 Ki jy j (t ) + Fiu(t ),
y(t ) = ∑n

i=1Hiyi(t ), with Ki j ∈ Rmi×μ j the coupling coefficient between nodes i and j, where
Kij = 0 if and only if there are no signals passing from j to i. The vectors u(t) and y(t) are denoted as

www.annualreviews.org • Model Reduction Methods for Network Systems 429

Figure 2: Model reduction of control networks

When the inner dynamic rule is known, the model may be reduced
via equivalence; conversely, when only the input-output transition
is known, one may construct equivalent systems to identify or
realize the given I/O relation.

4 / 43
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Background: System Identification and Realization

Given the input-output data of a system, we would like to
reconstruct its inner state space.

Figure 3: Identification of systems

Question:
What if the system is not observable? What if the inner space is of
unknown dimension?

5 / 43
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Outline of the Talk

Basic notions and examples of bisimulation

Application 1: aggregated (bi-)simulation of Boolean networks

Application 2: identification of Boolean networks

6 / 43
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Basic Setting: Discrete Transition Systems

Definition 1 (Transition Systems)

A tuple T = (X,U,Σ, O, h) is called a transition system, where

(i) X is the set of states,

(ii) U is the set of inputs (controls or actions),

(iii) Σ : X × U → 2X is a transition mapping,

(iv) O is the observations,

(v) h : X → O: observation mapping.

If |Σ(x, u)| ≤ 1, T is said to be deterministic.

Figure 4: A transition system

7 / 43
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Bisimulation of Transition Systems

Definition 2 (Simulation and Bisimulation)

Consider two transition systems Ti = (Xi, Ui,Σi, Oi, hi), i = 1, 2. If
there exists a relation R ⊂ X1 ×X2, s.t.

∀x1 ∈ X1,∃x2 ∈ X2, s.t. (x1, x2) ∈ R;

∀(x1, x2) ∈ R, ∀u1, ∃u2, s.t. (Σ1(x1, u1),Σ2(x2, u2)) ∩R ≠ ∅,

then R is called a simulation of T1 by T2. If further R−1 ⊂ X2 ×X1 is a

simulation of T2 by T1, then R is called a bisimulation of T1, T2.

Figure 5:

Bisimulated systems [8]

8 / 43
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Quotient Systems of Transition Systems

A special type of the simulation is the quotient system under
observational equivalence.

Definition 3 (Quotient Systems)

Let T = (X,U,Σ, O, h) be a transition system.
T/ ∼:= (X/ ∼, U,Σ∼, O, h∼) is called the quotient system of T under
observational equivalence, where

(i) X/ ∼= {x̄| x ∈ X} is the set of observational equivalence classes,
i.e. x1 ∼ x2 ⇔ h(x1) = h(x2). x̄ := {y|y ∼ x}.

(ii) U : (original) set of inputs.

(iii) Σ∼ : X/ ∼ ×U → 2X/∼ defined as follows: Assume x̄i, x̄j ∈ X/ ∼.
x̄j ∈ Σ∼(x̄i, u), if and only if ∃xi ∈ x̄i, xj ∈ x̄j , s.t. xj ∈ Σ(xi, u).

(iv) O: (original) set of observations.

(v) h∼ : X/ ∼→ O is defined as h∼(x̄) := h(x), ∀x̄ ∈ X/ ∼.

9 / 43
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An Example of Quotient System

Consider a transition system T = (X,U,Σ, O, h) where

X = {x1, x2, x3, x4}, U = {u1, u2}, O = {O1, O2, O3},
Σ(x1, u1) = {x2, x3}, Σ(x2, u1) = {x2, x3}, Σ(x2, u2) = {x4},
Σ(x3, σ2) = {x2, x3}, Σ(x4, σ1) = {x2, x4},
h(x1) = O1, h(x2) = h(x4) = O2, h(x3) = O3,

Construct its quotient system, as depicted in figures 4(a)4(b):�
 �	

�
 �	

�
 �	

�
 �	-
J
J
J
Ĵ

6
?

6
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(a) A transition system T
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(b) Its quotient system T/ ∼

Figure 4: An Example
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Bisimulation From Observational Equivalence

Definition 4

Consider a transition system T = (X,U,Σ, O, h). Assume x1 ∼ x2
are observational equivalent, if ∀u ∈ U and x′1 ∈ Σ(x1, u), there
exists an x′2 ∈ Σ(x2, u) such that x′1 ∼ x′2, then we say x1 ≈ x2. If
∀x1, x2, x1 ∼ x2 ⇒ x1 ≈ x2, then T/ ∼ is called a bisimulation of
T , denoted by T/ ≈.

Obviously, the above definition coincides with the general definition
of bisimulation by taking R := {(x, x̄)|x ∈ X} ⊂ T × T/ ∼.

11 / 43
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Quotient Systems as Bisimulations

Theorem 5 [3]

The observational equivalence ∼ is a bisimulation for a finite transition
system T = (X,U,Σ, O, h) if and only if ∀x̄ ∈ X/ ∼, ∀u ∈ U , P (x̄, u) is
either empty or a finite union of equivalent classes, where

P (x̄, u) := {y ∈ X|∃x′ ∼ x, x′ ∈ Σ(y, u)}.

(a) A bisimulation (b) Not a bisimulation

Figure 5: bisim

12 / 43
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Aggregation of Boolean Networks: Motivation

i 7→ (0, · · · , 0, 1, 0, · · · , 0)T
∨
∧
¬

7→
M∨
M∧
M¬

∈ Lk×k2 ASSR-Power-reduction,

Swapping, etc.
-

A chief bottleneck of algebraic state space representation (ASSR)

approach to finite-valued networks (FVN) is the curse of dimension.

FVN ASSR Theory

Cryptography

Networked Games

Biol. Sys.

- - �
�
��

-
A
A
AU

STP

Bottleneck
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Review: ASSR of Boolean Control Networks

Consider a Boolean control network
{
xi(t+ 1) = fi(x1(t), · · · , xn(t);u1(t), · · · , um(t)),

yk(t) = gk(x1(t), · · · , xn(t))
(1)

where {xi}ni=1, {yk}pk=1, {uj}mj=1 ⊂ D2. Denote by Li, Hk the structure
matrices of the functions fi, gk, i = 1, · · · , n, k = 1, · · · , p respectively,
let x := ⋉n

i=1xi, u := ⋉m
j=1uj , y := ⋉p

k=1yk, then the ASSR of (1) is

{
x(t+ 1) = Lu(t)x(t),

y(t) = H(t)x(t),
(2)

where L := L1 ∗ · · · ∗ Ln, H := Hi ∗ · · · ∗Hp.

14 / 43
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Generalization: ASSR of Finite-Valued Transition Systems

Proposition 6

Consider a finite-valued transition system T = (X,U,Σ, O, h) with
|X| = n, |U | = m, |O| = ℓ. Using vector form expressions that
X ∼ ∆n, U ∼ ∆m, and O ∼ ∆ℓ, the dynamics of T can be
expressed into its ASSR as

{
x(t+ 1) = Lu(t)x(t),

y(t) = Hx(t),
(3)

where x(t) ∈ Bn, u(t) ∈ ∆m, y(t) ∈ Bℓ and L ∈ Bn×mn,
H ∈ Lℓ×n.

15 / 43
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ASSR of Quotient Networks as Transition Systems

Theorem 7

Consider a transition system

{
x(t+ 1) = Lu(t)x(t),

y(t) = Hx(t),
(4)

where x(t), y(t) = Bp are Boolean vectors, u(t) ∈ ∆m is a logical vector,
L ∈ Bn×mn, H ∈ Lp×n. Then the quotient system is

{
X(t+ 1) = Lqu(t)X(t),

y(t) = HqX(t),
(5)

where Xi ∈ X/ ∼ is the equivalence class of yi, i ∈ [1, q],

Lq = H ×B L×B (Im ⊗HT ), Hq = Ip. (6)

where ×B is the Boolean product of matrices.
16 / 43
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Partition and Aggregation of BCNs

Proposition 8

Assume A ⊂ N is a block of nodes with {xi1 , · · · , xiα} as its block

inputs, and {{xj1 , · · · , xjβ} as its block outputs. Then the dynamic

subnetwork of A can be expressed as a controlled network ΣA with block

control vℓ := xiℓ , ℓ ∈ [1, α], and block output yk := xjk , k ∈ [1, β],

replacing block A in Σ by this block control system ΣA does not affect

the dynamics of the rest part of Σ.

ΣA

ΣN\A

Σ

-

-

-
6?

6
u y

uA
yA

xiℓ xjk

Figure 6: Partition of a BN

Figure 6: A Boolean control network Σ
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An Example

Denote by N the set of nodes of Σ, and let
A = {xi+1, xi+2, · · · , xi+µ} ⊂ N , µ > 1 be a subset of nodes.

The dynamic equations of A, denoted by ΣA, are





xi+1(t+ 1) = [(xi(t)∨̄xi+1(t)) ∧ u(t)]
∨ [(xi(t) ↔ xi+1(t)) ∧ ¬u(t)] ,

xi+2(t+ 1) = [(xi+1(t)∨̄xi+2(t)) ∧ u(t)]
∨ [(xi+1(t) ↔ xi+2(t)) ∧ ¬u(t)] ,

...

xi+µ(t+ 1) = [(xi+µ−1(t)∨̄xi+µ(t)) ∧ u(t)]
∨ [(xi+µ−1(t) ↔ xi+µ(t)) ∧ ¬u(t)] .

y(t) = xi+µ(t).

(7)

where ∧,∨,¬ are the conjunction, disjunction, and negation operators

respectively.
18 / 43
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An Example (Cont’d)

By Theorem 7, the quotient system ΣA/∼ is obtained as

y(t+ 1) = δ2[2, 1, 1, 2, 1, 2, 2, 1]u(t)v(t)y(t), (8)

where y(t) = xi+µ(t), v(t) = xi(t).
Obviously ΣA/∼ is a deterministic system.

The dimension of the subnetwork is reduced from 2µ to 2.

Question:
What if the quotient system is not deterministic?

19 / 43
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Aggregated Simulation of Boolean Networks

We execute an aggregated simulation of BCN in two steps.

BCN ΣA Quotient Network ΣA/ ∼ Probabilistic Network- -�
Simulation Bisimulation

Proposition 9

Let Σ be a networked system with network graph (N,E), A ⊂ N
is an aggregate-able subset. If ΣA/ ∼= ΣA/ ≈ is a bisimulation,
then the aggregation does not affect the dynamics of the overall
system.

20 / 43
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Approximate Bisimulation of Aggregated BCN

Consider the aggregated ASSR with respect to the block A. Set

MA := HALA(Ikm+α ⊗HT
A) = (mi,j) ∈ Mξ×η.

Denote mj :=
∑ξ

i=1mi,j , j ∈ [1, η], define a probabilistic system,
denoted by ΣP

A, as follows:

y(t+ 1) =M i1,i2,··· ,iηu(t)v(t)y(t), ij ∈ [1, ξ], j ∈ [1, η],

where
M i1,i2,··· ,iη = δξ[i1, i2, · · · , iη],

with probability

pi1,i2,··· ,iη =

∏η
j=1mij ,j∏η
j=1mj

.

ΣP
A is called the approximate bisimulation of the block A.

21 / 43
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An Example

The following system illustrates the two-step aggregated simulation of

BCN. Let A := {x2, x3, x4, x5}.

@
@R

�
��

�
�	

?

? -

@
@R

@
@I

�
��

x1

x2

x3 x5
x4

x6 y = x6

A





x1(t+ 1) = ¬x1(t),
x2(t+ 1) = x1(t) ∧ x3(t),
x3(t+ 1) = x3(t) ∨ x4(t),
x4(t+ 1) = x3(t) → x5(t),

x5(t+ 1) = x2(t)∨̄x4(t),
x6(t+ 1) = x4(t) ↔ x6(t)

y(t) = x6(t)

Figure 7: An Aggregated BN

ASSR of A:

{
z(t+ 1) = LAv(t)z(t) = δ16[2, · · · , 14]v(t)⋉4

i=1 zi(t)

y(t) = Hz(t) = δ2[1, 1, · · · , 2, 2]⋉4
i=1 zi(t),

where z1 = x2, z2 = x3, z3 = x4, z4 = x5, v = x1, y = x4.
22 / 43
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An Example (Cont’d)

Compressing A into one single node, we derive the quotient system
ΣA/ ∼ with the following ASSR:

{
w(t+ 1) = Lv(t)w(t),

y(t) = w(t),

where L = H ×B LA ×B (I2 ⊗HT ) =

[
1 1 1 1
1 1 1 1

]
.

Next, we proceed to construct the approximate identification of the
block.

23 / 43
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An Example (Cont’d)

Recall the system in Figure 4. The weighted structure matrix of
ΣA/ ∼ can be calculated as follows:

MA = HLA(I2 ⊗HT )

=

[
6 6 6 6
2 2 2 2

]
.

(9)

Then the simulation-aggregation is using the following probabilistic
network ΣP

A to replace A:

z(t+ 1) = LP
Av(t)z(t), (10)

where

LP
A =

[
2/3 2/3 2/3 2/3
1/3 1/3 1/3 1/3

]
.

24 / 43



Introduction Bisimulation: Definition & Examples Aggregation of BCNs Realization of BCNs Conclusion

Outlook: Aggregation-Simulation of Large-Scale BCNs

Using the aggregation-(bi-)simulation method, we may decompose a

BCN into probabilistic blocks and analyse them separately (topological

structures, control properties, etc.), which is a trade-off between

computational load and precision of approximation.

Figure 8: Aggregation of a BN [9]
25 / 43
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Outlook: Aggregation-Simulation of Large-Scale BCNs

Possible approaches for designing aggregate-able blocks:

Balancing method

Pinning control

Invariant spaces and minimal bisimulation

26 / 43
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Reduction and Realization

In the reduction (aggregation) problem, the inner dynamics is
known; in the realization problem, the only available data is the
input-output relation.

Question:
How many nodes do we need to reconstruct an input-output
transition rule?

Proposition 10

To construct an identification of a network with p output nodes,
one needs a network of at most 2p state nodes.

The proof follows from solving the equation

H×BLA×B (I2 ⊗HT ) = 1kp×km+p .

27 / 43
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Identification Algorithm

Following Proposition 10, we propose an identification algorithm to
reconstruct structure matrices from given input-output data.

Given a series S := ((u0, y0), · · · , (uT , yT ), · · · ), where {ut}t⩾0 ⊂ ∆km ,
{yt}t⩾0 ⊂ ∆kp .

Step 0. For ∀q, s ∈ [1, kp] and ∀r ∈ [1, km], set ℓrs := 1, αr
qs := 0.

Set L := 0km ⊗ Ik2p and denote by L = [L1, · · · , Lkm ], where
Li ∈ Lk2p×k2p is the i-th block of L, i ∈ [1, km].

Step t>0. Consider the case that (ut−1, yt−1) = (δi0km , δ
j0
km) and

(ut, yt) = (δi1km , δ
j1
km).

If αi0
j0j1

̸= 0 or ℓi0j0 = kp, go to Step t+ 1.

Else, for ∀j ∈ [(j0 − 1)kp + ℓi0j0 , j0k
p], set Colj Li0 := δj1k

p

k2p and

ℓi0j0 := ℓi0j0 + 1, αi0
j0j1

:= αi0
j0j1

+ 1, go to Step t+ 1. (If the
sequence is of finite length T , stop at Step T .)

28 / 43



Introduction Bisimulation: Definition & Examples Aggregation of BCNs Realization of BCNs Conclusion

Realization of the Network

The identification (realization) algorithm is described in the
following figure.

8 IEEE TRANSACTIONS AND JOURNALS TEMPLATE, VOL. XX, NO. XX, XXXX 2023

(δi0km , δ
j0
kp) (δi1km , δ

j1
kp)

(ut−1, yt−1) (ut, yt)· · · · · ·

· · · · · ·

· · · · · ·L1 Lkm

Li0

Col
(j0−1)kp+ℓ

i0
j0

Rowj1kp
1 1 · · · 1

kp−ℓ
i0
j0

Fig. 6. Illustration of Algorithm 4.2

system of a network Σ, then the system (15) with structure
matrix L constructed by Algorithm 4.2 and H = Ikp⊗1kp is a
bisimulation of Σ, and produces an identical quotient network
as Σ does, under observational equivalence.
Proof. One only needs to notice from (4) that the identification
or realization problem aims at finding a matrix L satisfying
H×BL×B (Ikm ⊗HT) = H̃ , where H̃ is the structure matrix
of the input-output transition system derived from the given
output data.

Then the proof is straightforward according to the construc-
tion of the algorithm. As depicted in Fig. 6, we set an initial
value for a k2p× k2p+m-dimensional structure matrix L, then
for any transition of input-output pairs from time t−1 to time t
of the estimated system with structure matrix L̄ corresponding
to the dynamics of 2p inner nodes and m inputs, we record the
transition in the structure matrix L of the estimating system.
For example, if (ut−1, yt−1) = (δi0km , δ

j0
km) and (ut, yt) =

(δi1km , δ
j1
km), then one knows that Rowj1(L̄δ

i0
kmδ

j0
kp) ̸= 0. Set a

counter αi0
j0j1

for the transition from (i0, j0) to j1, and another
counter ℓi0j0 for all different transitions starting from (i0, j0).
By letting the columns from Col

(j0−1)kp+ℓ
i0
j0

to Colj0kp in Li0

be identically δj1k
p

k2p , we guarantee that Rowj1(L̃tδ
i0
kmδ

j0
kp) ̸= 0,

where L̃t is the structure matrix of the inner nodes dynamics
of the estimating system corresponding to the updated L at
time t. If the transition from (i0, j0) to j1 has been recorded
already, or all possible transitions starting from from (i0, j0)
have been recorded, then we simply skip to the next step.

Therefore, in the end every transition appearing in the
given data will contribute to certain update or re-valuation
of the entries in the estimating system which can generate an
identical quotient dynamics as the estimated system. 2

Theorem 4.3 verifies that Algorithm 4.2 is effective as
a method for recovering or realizing a network from its
input-output data. We call it the simulated identification or
identification by bisimulation.

Remark 4.4: The computational complexity of Algorithm
4.2 is O(Tkp). This means the complexity is determined
only by time and the size of the outputs. Compared with
the existing identification methods such as those in [13], [49]
which requires the complexity over O(Tkp × kn) where n is
the number of inner nodes, our algorithm is easier to apply.

There are several notable advantages of our algorithm. First,

it requires neither controllability nor observability conditions
and needs no information about the initial value of the se-
quence, which are usually required by existing methods [49].
Moreover, the system constructed by this method has standard
observation matrix H , which means we can always view the
given observed output data as exactly the values of the first
p nodes of a network. Secondly, Compared to the existing
identification algorithms such as in [41], it is not restricted
to Boolean networks with single output, and hence can be
extended to any finite-valued transition systems. Thirdly, the
dimension of the inner state space is not presumed, thus it
can serve as a lower-dimensional simulation of the estimated
system when there is a smaller number of output nodes.

We use an example to illustrate the effectiveness of this
identification algorithm.

Example 4.5: Consider the following series of input-output
data of length T = 20, where there are one Boolean input and
two Boolean outputs.
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Applying Algorithm 4.2, we construct a Boolean network of
one input, four states, and two outputs, with ASSR as (1)
where the structure matrices are

L = δ16 [4, 8, 8, 8, 12, 4, 4, 4, 16, 16, 16, 16, 8, 4, 16,
16, 12, 8, 8, 8, 16, 4, 4, 4, 8, 4, 4, 4, 8, 8, 8, 8],

H = I4 ⊗ 14.

The transition matrix of the output nodes according to the
given data is

L̃ =




1 1 0 1 0 1 1 0
1 0 0 1 1 0 1 1
0 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0


 . (16)

From the above, one can check that H×BL×B (I2⊗HT) =
L̃ under Boolean multiplication, that is to say, the transition
system defined by L̃ is indeed generated from the Boolean
network defined by L,H under observational equivalence.

V. AGGREGATED APPROXIMATE BISIMULATION AND
IDENTIFICATION

In this section, we take one step further to improve the
accuracy of the “aggregation by simulation” in Section III,
and “identification by bisimulation” in Section IV.

A. Approximate Bisimulation
Consider a k-valued network Σ with network graph (N,E).

Assume a set of sub-nodes A ⊂ N is aggregatable and
output decoupled block. Let the equations of the subsystem
A with block inputs v1, · · · , vα ∈ N\A and block outputs
y1, · · · , yβ ∈ A be (1), denote by LA, HA the structure
matrices of its dynamics and observation respectively, then its
quotient system under output equivalence, denoted by ΣA/ ∼,
is

y(t+ 1) = L̃Au(t)v(t)y(t), (17)

Figure 9: Illustration of the identification algorithm
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An Example

Consider the following series of input-output data of length T = 20, with
one Boolean input and two Boolean outputs.
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Applying the identification algorithm, we construct a Boolean network of
one input, four states, and two outputs, with ASSR as (2) where the
structure matrices are

L = δ16 [4, 8, 8, 8, 12, 4, 4, 4, 16, 16, 16, 16, 8, 4, 16,
16, 12, 8, 8, 8, 16, 4, 4, 4, 8, 4, 4, 4, 8, 8, 8, 8],

H = I4 ⊗ 14.
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An Example

The transition matrix of the output nodes according to the given data is

L̃ =




1 1 0 1 0 1 1 0
1 0 0 1 1 0 1 1
0 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0


 . (11)

One can check that H ×B L×B (I2 ⊗HT) = L̃, that is to say, the
transition system defined by L̃ is indeed generated from the network
defined by L,H under observational equivalence.

Question:
How to make the identification algorithm more precise?
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An Example

The transition matrix of the output nodes according to the given data is

L̃ =




1 1 0 1 0 1 1 0
1 0 0 1 1 0 1 1
0 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0


 . (11)

One can check that H ×B L×B (I2 ⊗HT) = L̃, that is to say, the
transition system defined by L̃ is indeed generated from the network
defined by L,H under observational equivalence.

Question:
How to make the identification algorithm more precise?
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Probabilistic Identification Algorithm

Given a sequence

S := ((u0, y0), · · · , (uT , yT ), · · · ),
where {ut}t⩾0 ⊂ ∆km , {yt}t⩾0 ⊂ ∆kp . Choose an integer d ⩾ p.

Step 0. Set N i
jℓ = 1, i ∈ [1, km], j, ℓ ∈ [1, kp]. Set

L := 0km ⊗ Ikd+p , and denote L = [L1, · · · , Lkm ], where
Li ∈ Lkd+p×kd+p is the i-th block of L, i = 1, · · · , km.

Step t>0. Assume (ut−1, yt−1) = (δi0km , δ
j0
kp), and

(ut, yt) = (δi1km , δ
j1
kp).

Set N i0
j0j1

:= N i0
j0j1

+ 1, Si
j :=

{
ℓ ∈ [1, kp]

∣∣ N i
jℓ > 1

}
.

Assume that Si0
j0

= {ℓ1, · · · , ℓq}, q ∈ [1, kp].

For ∀i ∈ [1, km], ∀j ∈ [1, kp], ∀ℓ ∈ Si
j , set

βi
jℓ := φ

(
kd

N i
jℓ∑

s∈Si
j
N i

js

)
,

where φ(·) is the round down function. 32 / 43



Introduction Bisimulation: Definition & Examples Aggregation of BCNs Realization of BCNs Conclusion

Identification Algorithm

Let rj := (j − 1)kd, j ∈ [1, kp]. Set

Cols1Li0 := δℓ1k
d

kd+p ,

∀s1 ∈
[
rj0 + 1, rj0 + βi0

j0ℓ1

]
,

Cols2Li0 := δℓ2k
d

kd+p ,

∀s2 ∈
[
rj0 + βi0

j0ℓ1
+ 1, rj0 + βi0

j0ℓ1
+ βi0

j0ℓ2

]
,

...

ColsqLi0 := δ
ℓqk

d

kd+p ,

∀sq ∈
[
rj0 +

∑q−1
t=0 β

i0
j0ℓt

+ 1, j0k
d
]
,

then go to Step t+ 1.

If the series is of finite length T , stop at Step T .
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Probabilistic Realization of Finite-Valued Networks

The probabilistic identification (realization) algorithm is described in the

following figure.
JI, ZHANG & CHENG: AGGREGATED (BI-)SIMULATION AND IDENTIFICATION OF FINITE-VALUED NETWORKS 11

Li0= ∈Lkd+p×kd+p

(ut−1, yt−1)

(δi0km , δ
j0
kp)

(ut, yt)

(δi1km , δ
j1
kp)

· · ·

· · ·

· · ·

· · ·

1 1 · · · 1

1Rowℓ1kp

δℓ1k
p

kd+p · · · δj1k
p

kd+p

kd

· · · δℓqk
p

kd+p

βi0
j0j1

· · · · · ·

Colrj0+1

Bj0
1 Bj0

α Bj0
q

Fig. 7. Illustration of Algorithm 5.7

all the transitions starting from (δi0km , δ
j0
kp) which appeared in

the data up to now.
Following Algorithm 5.7, we have constructed from S

a Boolean matrix L ∈ Lkd+p×kd+p+m , Now the so-called
approximate identification is executed in two steps:

• First, define a deterministic network, denote by Σ, with
ASSR (1) of d + p inner nodes, p output nodes and m
input nodes whose structure matrix of the dynamics is
L constructed above following Algorithm 5.7, and the
structure matrix of observation is H := Ikp ⊗ 1kd .

• Then following Definition 5.3, construct the standard
approximate simulation of Σ, which is the desired ap-
proximate identification. It is a weak bisimulation of the
system generating S.

In this way, we achieved to construct a probabilistic network
according to the given sequence which makes a weak bisim-
ulation of the system to be identified.

Theorem 5.8: Let S be an input-output sequence of length
t from a k-valued network Σ0 with p outputs and m inputs.
Denote by Σ the standard approximate simulation of Σ0.
Denote by ΣS the network constructed from S following
Algorithm 5.7, of d + p inner state variables, and let Σd

t be
the probabilistic network which is the standard approximate
simulation of ΣS . For u ∈ U , i, j ∈ X , denote by nui (t) the
frequency of input-output pair (u, i) in S, denote by pui,j(d, t)
the probability of transition in Σd

t from output i to output j
under input u, and pui,j the probability of the same transition
in Σ. If limt→∞ nui (t) = ∞, then pui,j(d1, t) ⩽ pui,j(d2, t) for
all d1 > d2, and

lim
d→∞,t→∞

pui,j(d, t) = pui,j .

Proof. Calculating the transition probability of Σd
t constructed

from Algorithm 5.7 yields

pui,j(d, t) = φ
(
kd

Nu
ij(t)∑

s∈Su
i (t)

Nu
is(t)

)
· k−d,

where Nu
ij(t) is the cumulative frequency of transition from

i to j under u in the sequence of length t, Su
i (t) :=

{
j ∈

[1, kp]
∣∣ Nu

ij(t) ̸= 0
}

.
Since by assumption nui (t) tends to infinity as t increases,

by the law of large numbers and the memorylessness of the
Markov model, we have

lim
t→∞

Nu
ij(t)∑

s∈Su
i (t)

Nu
is(t)

= pui,j . (21)

On the other hand, let p ∈ [0, 1], for any positive integer
n, limn→∞

φ(np)
n = p. Together with (21), the proof is

completed. 2

Remark 5.9: Theorem 5.8 shows that, if in the standard
approximate simulation of a network, an output i is recurrent
under a given control u, then for the estimating system
according to Algorithm 4.2, inside its standard approximate
bisimulation, the transition dynamics starting from (u, i) will
converge to that of the standard approximate simulation of the
original network, as time and number of inner nodes go to
infinity.

Remark 5.10: Theorem 5.8 also holds true for the identi-
fication of probabilistic networks. If there is a probabilistic
transition system Σ of p states and m inputs, then under the
same assumption on recurrent outputs, the structure matrix
of the transition Σd

t as defined in Theorem 5.8 will also
converge to that of Σ as t → ∞, d → ∞. Compared with
the existing works such as in [2], [20], our method is not
restricted to Boolean-type networks, and the construction are
achieved through simple matrix evaluation, with the output
function given explicitly.

Now we will use another example to show the efficiency of
the identification algorithm.

Example 5.11: Consider the input-output sequence in Ex-
ample 4.5. Applying Algorithm 5.7 for the identification, one
will solve the structure matrices of the 4-state, 1-input, 2-
output network as

L = δ16 [4, 4, 8, 8, 12, 12, 4, 4, 16, 16, 16, 16, 8, 4, 16, 16,
12, 12, 8, 8, 16, 16, 4, 4, 8, 8, 4, 4, 8, 8, 8, 8];

H = I4 ⊗ 14.

Calculating the approximate bisimulation of this system fol-
lowing Definition 5.3 yields that

L̃′ =




1
2

1
2 0 1

4 0 1
2

1
2 0

1
2 0 0 1

4
1
2 0 1

2 1

0 1
2 0 0 1

2 0 0 0

0 0 1 1
2 0 1

2 0 0



.

One can see that this transition matrix coincides with the fre-
quency of different transitions appearing in the given sequence
S; with the same accessibility property as the matrix (16) in
Example 4.5, and therefore it serves as the weak bisimulation
of that system constructed for simulated identification.

VI. APPLICATIONS TO BIOLOGICAL SYSTEMS, MODEL
REDUCTION AND HYBRID SYSTEMS

Figure 10: Illustration of the identification algorithm 34 / 43
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An Example

Consider the input-output sequence in the previous example. Applying
the identification algorithm, one will solve the structure matrices of the
4-state, 1-input, 2-output network as

L = δ16 [4, 4, 8, 8, 12, 12, 4, 4, 16, 16, 16, 16, 8, 4, 16, 16,
12, 12, 8, 8, 16, 16, 4, 4, 8, 8, 4, 4, 8, 8, 8, 8];

H = I4 ⊗ 14.

Calculating the approximate bisimulation of this system yields

L̃′ =




1
2

1
2 0 1

4 0 1
2

1
2 0

1
2 0 0 1

4
1
2 0 1

2 1

0 1
2 0 0 1

2 0 0 0

0 0 1 1
2 0 1

2 0 0



.

One can see that this transition matrix coincides with the frequency of

different transitions appearing in the given sequence S; with the same

accessibility property as the matrix (11).
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Limit of the Approximation

Let S be an input-output sequence of length t from a k-valued network

Σ0 with p outputs and m inputs. Denote by Σ the approximate

simulation of Σ0. Denote by ΣS the network constructed from S

following the probabilistic identification algorithm, of d+ p inner state

variables, and let Σd
t be the approximate simulation of ΣS .

Theorem 11

For u ∈ U , i, j ∈ X, denote by nui (t) the frequency of input-output pair
(u, i) in S, denote by pui,j(d, t) the probability of transition in Σd

t from
output i to output j under input u, and pui,j the probability of the same
transition in Σ. If limt→∞ nui (t) = ∞, then pui,j(d1, t) ⩽ pui,j(d2, t) for all
d1 > d2, and

lim
d→∞,t→∞

pui,j(d, t) = pui,j .

Meaning: the reconstructed network converges to the approximate

bisimulation of the original system.
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Conclusion

Main contribution of our work:

1 Model reduction of large-scale networks via observational
equivalence;

2 Identification and realization of the networks with minimal
node sets.

Meanwhile, the bisimulation approach has application in switched
systems and continuous-time multi-agent systems.
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Perspective: Switched Systems

Consider a hybrid linear system

ξ(t+ 1) = Ay(t)ξ(t) +By(t)η(t), (12)

where ξ(t) ∈ Rn is the state, η(t) ∈ Rm is the control, the switching
signal y(t) is generated by logical control system (2).

Assume Rn = Im(A1)⊕ · · · ⊕ Im(Ap), rank(Bi) = rank(Ai),
Im(Bi) = Im(Ai), i = 1, · · · , p. We consider the reachability of two
given points x, y ∈ Rn with respect to the above system.

Proposition 12

∀x, y ∈ Rn. Assume x ∈ Im(Ai), y ∈ Im(Aj), then ∃T > 0, a set of
switching and controls {u(0), · · · , u(T )} driving a trajectory of (2) from
x to y, if and only if, L̃i,j ̸= 0.
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Bisimulation View of Continuous and Discrete Transitions

Continuous-time nonlinear
systems

{
ẋ(t) = f(x(t)) +

∑m
i=1 u

i(t)gi(x(t))

y(t) = h(x(t))

⇓
˙̃y(t) =Mỹ(t) + Fu(t)

Finite transition systems

{
x(t+ 1) = Lx(t)u(t)

y(t) = Hx(t)

⇓
ỹ(t+ 1) =Mỹ(t)u(t)

(x, ỹ) - Bisimulation;
Span{H} - Invariant subspace;
ỹ(t) - Transition in quotients.
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Perspective: Bisimulation of Continuous-Time Systems

Quotient representation gives rise to the observer realization of the
control systems.

7
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Fig. 3. S-System with I-O vs SO-System

Consider the continuous time case, we have

ẏ(t) = A

⋉

y(t) +Bu(t),
y(0) ∈ R∞, A ∈ Mm×n, B ∈ Mm×r.

A straightforward computation verifies that

y(t) = e⟨At⟩ ⋉ y0 +
∫ t

0

e⟨A(t−τ)⟩ ⋉ Bu(τ)dτ.

An alternative approach is: assume y0 ∈ Rq . Then it is easy
to verify that

y0+ :=y(0+) = lim
t→0+

e⟨A
t⟩y0 = Im×n

⋉

y0 = Ψm×qy0.

Then the system can be converted to

ẏ(t) = ΠAy(t) +Bu(t), y(0) = y0+ . (32)

Here (32) is a classical linear control system.
Remark 4.10: When the original system is large or compli-

cated, the exact OR-realization is impossible because the exact
OR-realization needs the information about whole original
system. So to apply OR-realization to large and/or complicated
systems, the approximation is necessary. In this case, we are
facing a DK-STP based approximated systems. The purpose
of this section is to provide a systematic approach to such
systems. Particularly, it shows how to calculate the trajectories
of such systems.

V. OR-SYSTEMS OF LINEAR (CONTROL) SYSTEMS

A. Approximate OR-System

Recall linear control system (3) or (4). Its corresponding
SO-system is (6) or (8). It is clear that (6) or (8) is not a well
posed dynamic (control) system.

The transition processes of the input-output system (3) (or
(4)) and its corresponding SO-system are depicted in Figure
3.

From Figure 3, one sees that to make the SO-system a
properly defined dynamic system we need a bridge (mapping)
from Rp to Rn. The bridged SO-system is called the OR-
system. We give a precise definition as follows:

Definition 5.1: (i) The OR-system of (6) is defined by

y(t+ 1) =M

⋉

y(t) +Nu(t).

(ii) The OR-system of (8) is defined by

ẏ(t) =M

⋉

y(t) +Nu(t).
To save space hereafter we consider continuous time sys-

tems only. It is not difficult to extend all the following
arguments from continuous time case to discrete time case.

In Section 4 we have discussed how to solve an OR-
system, as long as the

⋉

is well defined. It is clear from
aforementioned discussions that

⋉

=

⋉

Ψ. That is,

⋉

is
completely determined by its bridge matrix, which is exactly
the “bridge mapping” required in Fig. 3 B.

• Projection-Based

⋉

:
A natural way to choose the bridge is Ψ = Ψp, where the Ψp

is defined by (18). This is very natural, because the “bridge”
defined by Ψp coincides with the project πp

n : Rp → Rn. This
fact reveals the physical meaning of the relationship between
projection and DK-STP.

Then we have the following result.
Proposition 5.2: Consider an SO-system

ẏ(t) =Mẋ(t) +Nu(t), y(0) = y0 ∈ R∞,

where y(t) ∈ Rp, x(t) ∈ Rn. Using the project bridge matrix
Ψp, its OR-system is

ẏ(t) =MΠp
ny(t) +Nu(t), y(0+) = Ip

⋉

y0.
We give an example to depict the procedure.
Example 5.3: Consider the following SO-system.

ẏ(t) =Mx(t) +Nu(t),
y(0) = (1, 2, 0,−2,−1,−1)T ∈ R6,

where M =
[−1 −2 3 2 −3
−3 3 −3 2 −3

]
, N = [ 4 0 ]

T
.

Note that Π2
5 = [ 0.4 0.4 0.2 0 0

0 0 0.2 0.4 0.4 ]
T
, we have the OR-

system as

ẏ(t) = M

⋉

y(t) +Nu(t),
= MΨ5×2y(t) +Nu(t),
:=Ly(t) +Nu(t),

where L =MΠ2
5 =

[−0.6 0.2
−0.6 −1

]
. Moreover, Π6

2 = [ 1 1 1 0 0 0
0 0 0 1 1 1 ] .

Then, y(0+) = Π6
2y0 =

[
3
−2

]
.

• Least-Square

⋉

:
In the above project-based approach, we need only the SO-

system, which could be obtained from observing data directly.
Now assume we have more information. Precisely speaking,
we know the state-observer mapping y(t) = Hx(t), such as in
Eq. (6) or (8). Then we can look for a “best” linear mapping as
the “bridge”. Precisely speaking, we look for a linear mapping
x(t) = Ξy(t) as the bridge.

Then we have

x(t) = ΞHx(t). (33)

Figure 11: S-System with I-O vs SO-System
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Further Studies

We propose the following topics for future work:

1 Analysis of switched systems via transition representation;

2 Ensemble control of large-scale networks via (bi-)simulation;

3 Reduction of finite-valued networks by minimal bisimulation.
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