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Introduction
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Background: Externally Equivalent Systems

In systems engineering, externally equivalent states can be viewed as
identical, which may simplify the system structures.
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System Equivalence: Aims and Difficulties

We hope to find an appropriate way to characterize the similarity
or equivalence between systems, neither too strict nor too rough.
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(c) Diffeomorphic equivalence: too strict (d) 1/0 equivalence: too rough [6]
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Background: Model Reduction via Equivalence

Using equivalence, we may simplify the analysis of systems and
achieve lower computational complexity.

Model reduction

Figure 2: Model reduction of control networks

When the inner dynamic rule is known, the model may be reduced
via equivalence; conversely, when only the input-output transition
is known, one may construct equivalent systems to identify or

realize the given 1/O relation.
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Background: System Identification and Realization

Given the input-output data of a system, we would like to
reconstruct its inner state space.
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Figure 3: Identification of systems
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Background: System Identification and Realization

Given the input-output data of a system, we would like to
reconstruct its inner state space.
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Question:
What if the system is not observable? What if the inner space is of

unknown dimension?
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Outline of the Talk

@ Basic notions and examples of bisimulation
@ Application 1: aggregated (bi-)simulation of Boolean networks

@ Application 2: identification of Boolean networks
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Bisimulation: Definition & Examples
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Basic Setting: Discrete Transition Systems

Definition 1 (Transition Systems)
A tuple T'= (X,U, 3,0, h) is called a transition system, where
(i) X is the set of states,
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Bisimulation: Definition & Examples
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Bisimulation of Transition Systems

Definition 2 (Simulation and Bisimulation)

Consider two transition systems T; = (X;,U;, ¥%;,0;,h;), i = 1,2. If
there exists a relation R C X; x X5, s.t.

@ Vri € Xq,3dxs € X, s.t. (.’I,‘l,mg) € R,
o V(LL’l,ZEQ) € R, Yuyp, Jus, s.t. (Zl(xl,m),Eg(:{:g,ug)) NR 7é g,

then R is called a simulation of T} by Ty. If further R™! C X3 x X is a
simulation of T5 by 77, then R is called a bisimulation of Ty, T5.

v

Figure 5:
Bisimulated systems [8]
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Bisimulation: Definition & Examples
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Quotient Systems of Transition Systems

A special type of the simulation is the quotient system under
observational equivalence.

Definition 3 (Quotient Systems)

Let T = (X,U,X, 0, h) be a transition system.
T/ ~:=(X/~,U,2.,0,h.) is called the quotient system of T" under

observational equivalence, where
(i) X/ ~={Z|xz € X} is the set of observational equivalence classes,
ie. T1 ~x2 & h(zy) = h(z2). T:={yly ~x}.
(i) U: (original) set of inputs.
(i) T : X/ ~ xU — 2%/~ defined as follows: Assume Z;, T; € X/ ~.
Z; € (%, w), if and only if Jz; € Z;, x; € T, s.t. x; € X(zy,u).
(iv) O: (original) set of observations.

(V) A~ : X/ ~— O is defined as h(Z) := h(z), VT € X/ ~.
v
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Bisimulation: Definition & Examples
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An Example of Quotient System

Consider a transition system T'= (X, U, X, O, h) where

X ={z1, 22, 73,24}, U ={u1,u2}, O ={01,02,03},
Y(z1,u1) = {xa, 23}, B(xo,u1) = {x9, 23}, T(w2,uz) = {24},
2(1'3,0’2) = {,’EQ,Q?;),}, Z($47(71) = {1‘2,1'4},

h(.]?l) = 017 h(ibg) = h(l‘4) = 02, h(xg) = 03,

Construct its quotient system, as depicted in figures 4(a)4(b):

(a) A transition system T' (b) Its quotient system T/ ~
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Bisimulation: Definition & Examples
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Bisimulation From Observational Equivalence

Definition 4

Consider a transition system 7' = (X,U, X, O, h). Assume 1 ~ x3
are observational equivalent, if Vu € U and x} € X(x1,u), there
exists an x5, € X(x2,u) such that 2} ~ 2%, then we say z1 = z9. If
Va1, x9, T1 ~ To = X1 X T, then T'/ ~ is called a bisimulation of
T, denoted by T'/ ~.

Obviously, the above definition coincides with the general definition
of bisimulation by taking R := {(z,Z)|lr € X} CT x T/ ~.
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Bisimulation: Definition & Examples
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Quotient Systems as Bisimulations

The observational equivalence ~ is a bisimulation for a finite transition
system T = (X, U, 3,0, h) if and only if VZ € X/ ~, Yu € U, P(Z,u) is
either empty or a finite union of equivalent classes, where

P(z,u) :={y € X|3' ~z, 2/ € (y,u)}.

(a) A bisimulation (b) Not a bisimulation 12743
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Aggregation of Boolean Networks: Motivation
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Review: ASSR of Boolean Control Networks

Consider a Boolean control network

xi(t+ 1) = filx1(t), -, xn(t);ur(t), -, um(t)), (1)
Ye(t) = ge(zi(t), -+ an(t))

where {z;}7 1, {yr}i_y, {u;j}72, C Do. Denote by L;, Hy, the structure

matrices of the functions f;, gx, i =1,--- ,n, k=1,--- ,p respectively,
let x:= X @y, ui= XJLuy, Y= XY _ Yk, then the ASSR of (1) is

x(t+ 1) = Lu(t)x(t),
{yu) _ H(t)a(t), )

where L := Ly *---% L, H:=H; *---x Hp.

14 /43
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Generalization: ASSR of Finite-Valued Transition Systems

Proposition 6

Consider a finite-valued transition system 7' = (X, U, X, O, h) with
|X| =n, |Ul =m, |O] = ¢. Using vector form expressions that

X ~A, U~A,,, and O ~ Ay, the dynamics of T can be
expressed into its ASSR as

{x(t +_1) = Lu(t)z(t), 3
y(t) = Ha(t),

where z(t) € B", u(t) € A, y(t) € B and L € Bysmn,
He Lygn.
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ASSR of Quotient Networks as Transition Systems

Consider a transition system

xz(t+1) = Lu(t)z(t),
y(t) = Ha(b),

(4)

where z(t), y(t) = BP are Boolean vectors, u(t) € A,, is a logical vector,
L € By xmn, H € Lpxn. Then the quotient system is

X(t+1) = Lou(t)X(t), (5)
y(t) = Hy X (t),
where X; € X/ ~ is the equivalence class of y;, i € [1,¢],
Ly=HxgLxg(I,®H"), H,=1I, (6)

where X is the Boolean product of matrices. ko a3
4
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Partition and Aggregation of BCNs

Proposition 8

Assume A C N is a block of nodes with {x;,,--- ,z;_} as its block
inputs, and {{z;,,---,2;,} as its block outputs. Then the dynamic
subnetwork of A can be expressed as a controlled network 34 with block
control v := x;,, ¢ € [1,a], and block output y;, :=z;,, k € [1, 3],
replacing block A in X by this block control system > 4 does not affect

the dynamics of the rest part of 3.
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Figure 6: Partition of a BN
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An Example

Denote by N the set of nodes of ¥, and let
A={x;41,2iq2, - ,Tiyp} C N, p> 1 be a subset of nodes.

The dynamic equations of A, denoted by X4, are

Tiv1(t+1) = [(@i(H)Vais1(t)) Au(t)]
V[(@i(t) > ziga(t) A —u(t)],
Tiga(t +1) = [(@ig1 () VEiga(t)) Au(t)]
V(@i (t) < @iga(t)) A —u(t)],

Tipp(t +1) = [(@ipp-1(O)Vrip,(t) Ault)]
VI{(@ipp—1(t) < i () A —u(t)].
y(t) = zigu(t).

where A, V, - are the conjunction, disjunction, and negation operators

respectively.
18/43
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An Example (Cont'd)

By Theorem 7, the quotient system X 4/~ is obtained as
y(t+1) =8202,1,1,2,1,2,2, u(t)v(t)y(t), (8)

where y(t) = 2i4,u(t), v(t) = 2;(t).
Obviously ¥ 4/~ is a deterministic system.

The dimension of the subnetwork is reduced from 2* to 2.

19/43
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An Example (Cont'd)

By Theorem 7, the quotient system X 4/~ is obtained as
y(t+1) =8202,1,1,2,1,2,2, u(t)v(t)y(t), (8)

where y(t) = 2i4,u(t), v(t) = 2;(t).
Obviously ¥ 4/~ is a deterministic system.

The dimension of the subnetwork is reduced from 2* to 2.

Question:
What if the quotient system is not deterministic?

19/43
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Aggregated Simulation of Boolean Networks

We execute an aggregated simulation of BCN in two steps.

Simulation Bisimulation
BCN X4 Quotient Network 3 4/ Probabilistic Network

A
Y

Y

Proposition 9

Let ¥ be a networked system with network graph (N, E), A C N
is an aggregate-able subset. If ¥4/ ~= X4/ ~ is a bisimulation,
then the aggregation does not affect the dynamics of the overall

system.
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Approximate Bisimulation of Aggregated BCN

Consider the aggregated ASSR with respect to the block A. Set
My = HaLA(Lm+o @ HZ;) = (mi,j) € Mexy.

Denote m; := Zle mij, j € [1,n], define a probabilistic system,
denoted by XX, as follows:

y(t+1) = M2ty (t)y(t), i € [1,€], j € [1,7],
where o '
M“’ZQ,H.JW - 6€[i17i27 e 7in]7
with probability

7 o
=1 My

Piy i, yin = ] :
Hj:l nm;

Efj is called the approximate bisimulation of the block A.
21/43
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An Example

The following system illustrates the two-step aggregated simulation of
BCN. Let A := {x2, 23,24, 25}.

1 r1(t+1) = -z (t),
Z‘Q(t + 1) = l‘l(t) A xg(t),
A o z3(t + 1) = x3(t) V 24(2),
xa(t+ 1) = x3(t) — z5(1),
3 s x5(t + 1) = 2a(t)Vay(t),
4 Z‘G(t + 1) = .’174(t) — .I(;(t)
y(t) = z(t)
Tey Y = %6 Figure 7: An Aggregated BN
[t 1) = Lav(0)2(8) = drgf2 - 14Jot) Ly (1)
ASSR of 4 {y(t) = Ha(t) = 6[1,1, - ,2,2] b, zi(8),

where 21 = X2, g = X3, 23 = T4, 24 = X5, UV =120T1, Y = T4.
22/43
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An Example (Cont'd)

Compressing A into one single node, we derive the quotient system
Y4/ ~ with the following ASSR:

{w(t—l—l = Lu(t)w(t),
y(t) = w(t),

whereL:HxBLAxB(b@HT):[l 1l 1]_

1 1 11

Next, we proceed to construct the approximate identification of the
block.
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An Example (Cont'd)

Recall the system in Figure 4. The weighted structure matrix of
Y4/ ~ can be calculated as follows:

My = HLA(Iy® HT)

By g

Then the simulation-aggregation is using the following probabilistic
network ¥ to replace A:

At +1) = LEu(t)2(t), (10)
where p[2/3 2/3 2/3 2/3

La= 1/3 1/3 1/3 1/3|°

24/43
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Outlook: Aggregation-Simulation of Large-Scale BCNs

Using the aggregation-(bi-)simulation method, we may decompose a
BCN into probabilistic blocks and analyse them separately (topological
structures, control properties, etc.), which is a trade-off between
computational load and precision of approximation.

Figure 8: Aggregation of a BN [9]
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Outlook: Aggregation-Simulation of Large-Scale BCNs

Possible approaches for designing aggregate-able blocks:

e Balancing method
@ Pinning control

@ Invariant spaces and minimal bisimulation

26/43
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Reduction and Realization

In the reduction (aggregation) problem, the inner dynamics is
known; in the realization problem, the only available data is the
input-output relation.

27/43



Realization of BCNs
0000000000

Reduction and Realization

In the reduction (aggregation) problem, the inner dynamics is
known; in the realization problem, the only available data is the
input-output relation.

Question:

How many nodes do we need to reconstruct an input-output
transition rule?
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Reduction and Realization

In the reduction (aggregation) problem, the inner dynamics is
known; in the realization problem, the only available data is the
input-output relation.

Question:
How many nodes do we need to reconstruct an input-output
transition rule?

Proposition 10

To construct an identification of a network with p output nodes,
one needs a network of at most 2p state nodes.

The proof follows from solving the equation
HXBLA XB(IQ & HT) = 1kp><km+p.

27/43
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|dentification Algorithm

Following Proposition 10, we propose an identification algorithm to
reconstruct structure matrices from given input-output data.

Given a series S := ((uo,%0), -+, (wr,yr), ---), where {w; }1>0 C Agm,
{yt}t>0 C Apo.

@ Step 0. For Vg,s € [1,k?] and Vr € [1,k™], set (] := 1, ag, := 0.
Set L := 0pm ® Ij2y and denote by L = [Lq,-- -, Lym], where
L; € Ly2px 20 is the i-th block of L, i € [1,k™].

@ Step t>0. Consider the case that (us—1,y:—1) = (52%,6%%) and
(utv_yt) = (51?77”(_5%%)-
If a0, #0or £ =kP, gotoStept+ 1.
Else, for Vj € [(jo — 1)k + €2, jokP], set Col; L;, == 6/4% and
é;g = Z;((’) '—1— 1, ?‘;;jl = a;f;jl +1, go to Step t 4 1. (If the
sequence is of finite length T', stop at Step T'.)

28/43
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Realization of the Network

The identification (realization) algorithm is described in the
following figure.

(wi—1,9ye-1) (e, Ye)
(S 010) | (835 6

)
. . i B A |
I | ] I
1 R Y Y R 1 |
| Ly | 2 Rowier | Lgm |
! | | p_ g0 cee ! I
1 U RS 1 |
Lo 1 SRR ]
C

Ol Go-1ykpreld
Figure 9: Illustration of the identification algorithm
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An Example

Consider the following series of input-output data of length T" = 20, with
one Boolean input and two Boolean outputs.

(03,0%), (83, 0%), (93, 03), (03, 0%), (63, d1), (03, 0%), (63, 04,
(5%7 52)’ (5%’ 63)7 (6%7 5i)’ (6%’ 51{)7 (6%7 52)’ (65’ 521[)7 (5%762)7

Applying the identification algorithm, we construct a Boolean network of
one input, four states, and two outputs, with ASSR as (2) where the
structure matrices are

L =616[4,8,8,8,12,4,4,4,16,16,16, 16,8, 4, 16,
16,12,8,8,8,16,4,4,4,8,4,4,4,8,8,8, 8],
H=1I®1,.
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An Example

The transition matrix of the output nodes according to the given data is

0 0

1

1 1

o ol (11)
0 0

O O ==
O = O
— O~ =
O = = O
_ o O =

0
0
1

One can check that H x5 L x5 (I ® HT) = L, that is to say, the
transition system defined by L is indeed generated from the network
defined by L, H under observational equivalence.

31/43
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An Example

The transition matrix of the output nodes according to the given data is
0 0

1

1 1

o ol (11)
0 0

O O ==
O = O
— O~ =
O = = O
_ o O =

0
0
1

One can check that H x5 L x5 (I ® HT) = L, that is to say, the
transition system defined by L is indeed generated from the network
defined by L, H under observational equivalence.

Question:
How to make the identification algorithm more precise?

31/43
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Probabilistic Identification Algorithm

Given a sequence

S = ((UO, y0)7 ) (UT,yT), to )a
where {u;}t>0 C Agm, {Y1}t>0 C Age. Choose an integer d > p.
© Step 0. Set N;, =1, i € [1,k™], j,0 € [1,kP]. Set
L := O0gm ® Ia+p, and denote L = [Lq,--- , Lpm|, where
L; e £kd+pxkd+p is the i-th block of L, e =1,--- , k™.
@ Step t>0. Assume (up—1,Yyt—1) = (6,1‘1,1,(5%‘;), and
(wts Yt) = (O Opp)-
Set Njpj, := Njoj, +1, 5} := {¢ e[,k | NI, > 1}
Assume that S%0 = {{1,--- , £y}, g € [1,kP].
For Vi € [1,k™], Vj € [1,kP], VL € S}, set

, Ni,
ﬁl'é = @(kd 1 7 )7
! ZSESJ’: N;

Js

where ¢(-) is the round down function. 343
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|dentification Algorithm

o Letr;:=(j—1)k% j € [1,kP]. Set

Coly, Ly, = 6118

Vsi € [rjo + 1,7‘j0 + 6;251]7

Coly, L, = 625, , ‘

Vs € [Tjo + ﬁ;zfl + 1’Tj0 + ;3[1 + ;352]’

' - eqkd
COlsqLio T 6kd+pa
-1 qi .
Vsq € [rjo + 22{20 Bjo, + 1,40k,

then go to Step t + 1.
@ If the series is of finite length T, stop at Step T'.
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Probabilistic Realization of Finite-Valued Networks

The probabilistic identification (realization) algorithm is described in the
following figure.

(w1, ye—1)|  (ue,ye)
(T 85) | (B 513)

B Bio  Bib e
I B e
I i | 1 ~
4 1
Rowel w i ngh : : : :’
1 —A— | : o
: 1[1] -] 1,4--4: ------- . J:
: ’ B
i
Liuz i : i : : 6£kd+p><kd+p
| . ! |
! ! j1kP L4k
: NGEER --S0E - !
1 I | : :
1 I l ! |
1 I I ! ! |
: i ., ! | !
' T o
I R B
Col,; 11

Figure 10: Illustration of the identification algorithm 34/43
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An Example

Consider the input-output sequence in the previous example. Applying
the identification algorithm, one will solve the structure matrices of the
4-state, 1-input, 2-output network as

L =616 [4,4,8,8,12,12,4,4,16, 16, 16, 16, 8, 4, 16, 16,
12,12,8,8,16,16,4,4,8,8,4,4,8,8,8, 8];
H=1I®1,.

Calculating the approximate bisimulation of this system yields

220505 50
s_f 00t dodn
020011 000
0014 0121 00

One can see that this transition matrix coincides with the frequency of
different transitions appearing in the given sequence S; with the same

accessibility property as the matrix (11).
35/43
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Limit of the Approximation

Let .S be an input-output sequence of length ¢ from a k-valued network
Y with p outputs and m inputs. Denote by ¥ the approximate
simulation of ¥j. Denote by g the network constructed from S
following the probabilistic identification algorithm, of d + p inner state
variables, and let 3¢ be the approximate simulation of Y.

For u € U, i,j € X, denote by n¥(t) the frequency of input-output pair
(u,i) in S, denote by p;;(d,t) the probability of transition in ¢ from
output ¢ to output j under input u, and p;'; the probability of the same
transition in ¥. If lim; . n;(t) = oo, then pi';(d1,t) < pj;(d2,t) for all
dy > ds, and

lim p:»ij(d, t) = p;-"j.

d—00,t—00

Meaning: the reconstructed network converges to the approximate

bisimulation of the original system.
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Conclusion

Main contribution of our work:

© Model reduction of large-scale networks via observational
equivalence;

@ lIdentification and realization of the networks with minimal
node sets.

Meanwhile, the bisimulation approach has application in switched
systems and continuous-time multi-agent systems.
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Perspective: Switched Systems

Consider a hybrid linear system

E(t+1) = Ayp&(t) + Bypn(t), (12)

where £(t) € R™ is the state, n(t) € R™ is the control, the switching
signal y(t) is generated by logical control system (2).

Assume R™ =Im(A;) & - -- & Im(A4,), rank(B;) = rank(4,),
Im(B;) =Im(4;), i =1,---,p. We consider the reachability of two
given points x,y € R™ with respect to the above system.

Proposition 12

Vz,y € R™. Assume = € Im(4;), y € Im(A4;), then 3T > 0, a set of
switching and controls {u(0),--- ,u(T)} driving a trajectory of (2) from
x to y, if and only if, L; ; # 0.

38/43
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Bisimulation View of Continuous and Discrete Transitions

Continuous-time nonlinear
systems Finite transition systems

{a‘c(t) = f@(t) + S5, u(t)gi(x(t) {x(t +1) = La(tu(t)
y(t) = Ha(t)
U U
() = My(t) + Fu(t) Gt + 1) = My(t)u(t)

(x,9) - Bisimulation;

Span{H } - Invariant subspace;
y(t) - Transition in quotients.

39/43
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Perspective: Bisimulation of Continuous-Time Systems

Quotient representation gives rise to the observer realization of the
control systems.

A. Input-Output Transition System

Figure 11: S-System with I-O vs SO-System w043
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Further Studies

We propose the following topics for future work:

@ Analysis of switched systems via transition representation;
@ Ensemble control of large-scale networks via (bi-)simulation;

© Reduction of finite-valued networks by minimal bisimulation.

41/43



Conclusion
00000

References

[

) WEE & W D D

Z. Ji, X. Zhang, and D. Cheng, Aggregated (bi-)simulation and identification of finite-valued networks,
IEEE Transactions on Automatic Control, (2025). https://ieeexplore.ieee.org/document/10771692

D. Cheng, X. Zhang, and Z. Ji, Transition system representation of Boolean control networks, Unmanned
Systems, 12 (2023), no. 2, 239-247.

C. Belta, B. Yordanov, and E. A. Gol, Formal methods for discrete-time dynamical systems. Cham: Springer
International Publishing, 2017.

P. Chao, W. Li, X. Liang, Y. Shuai, F. Sun, and Y. Ge, A comprehensive review on dynamic equivalent
modeling of large photovoltaic power plants. Solar Energy, 210 (2020), 87-100.

X. Zhang, M. Meng, and Z. Ji, Analysis of discrete-time switched linear systems under logic dynamic

switching, IEEE Transactions on Neural Networks and Learning Systems, (2024).
https://ieeexplore.ieee.org/document/10744584

D. H. Johnson, Origins of the equivalent circuit concept: the current-source equivalent. Proceedings of the
IEEE, 91 (2003), no. 5, 817-821.

A. C. J. Luo, Dynamical system synchronization. New York: Springer, 2013.
D. Sangiorgi, Introduction to bisimulation and coinduction. Cambridge University Press, 2011.

Y. Zhao, J. Kim, M. Filippone, Aggregation algorithm towards large-scale Boolean network analysis, IEEE
Transactions on Automatic Control, 58 (2013), no. 8, 1976-1985.

S. Zhu, J. Cao, L. Lin, J. Lam, and S. |. Azuma, Towards stabilizable large-scale Boolean networks by
controlling the minimal set of nodes, IEEE Transactions on Automatic Control, 69 (2024), no. 1, 174-188.
42 /43


https://ieeexplore.ieee.org/document/10771692
https://ieeexplore.ieee.org/document/10744584

Thanks for your attention!

43 /43



	Introduction
	Bisimulation: Definition & Examples
	Aggregation of BCNs
	Realization of BCNs
	Conclusion

